
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

June 2020

The Resilience of k-Cores in Graphs The Resilience of k-Cores in Graphs

Ricky Laishram
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Laishram, Ricky, "The Resilience of k-Cores in Graphs" (2020). Dissertations - ALL. 1235.
https://surface.syr.edu/etd/1235

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F1235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1235?utm_source=surface.syr.edu%2Fetd%2F1235&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

A k-core of a graph is defined as the maximal subgraph such that all the nodes in the subgraph

has at least k neighbors within the subgraph. k-core have been used in a number of applications

ranging from anomaly detection and finding influential spreaders in social networks, to studying

the robustness of financial and ecological networks.

In our work, we study the e�ect of missing data (edges or nodes) to the k-core of a graph. In partic-

ular, we study three di�erent type of changes. The first type of change is the core structural change,

in which the rank order of nodes by k-core number is changed. The second type is the change in the

size of the k-core, and it is called the core minimization. The final change we study is called graph

unraveling, and it is associated with a change in the size of the graph itself.

We study a graph’s resilience changes – how can we e�iciently tell if a graph is resilience to each of

these changes?We then use our analysis to propose novel algorithms tomake small modifications

toagraphwith theobjectiveofmaximizing its resilience.Weshowexperimentally thatourproposed

method outperforms all considered baselines methods on real-world graphs.

Finally, we study the organization of the di�erent k-shells in a graph (for di�erent values of k). For

example, in some graphs there are many connections between shells, while in other graphs, the

shells are mostly disconnected from one another. We prove that this organization can have a huge

impact on the resilience of a graph to the three changes we studied.

The Resilience of k-Cores in Graphs

by

Ricky Laishram

B.E., Birla Institute of Technology, 2010

M.S., Syracuse University, 2015

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer & Information Science & Engineering

Syracuse University

June, 2020

Copyright 2020

Ricky Laishram

All Rights Reserved

This dissertation is dedicated to my parents for always supporting and believing in me.

Appreciation

I would like to express my deepest appreciation for my PhD advisor, Dr. Sucheta Soundarajan. This

dissertation would not have been possible without her continual guidance and support.

I would also like to thank Dr. Chilikuri Mohan and Dr. Kishan Mehrotra, who taught me so much

about research. Their guidance when I started my PhD has been immensely valuable.

I am also thankful to all my research collaborators (Dr. Ahmet Erdem Sarıyüce of University at Buf-

falo, Dr. Tina Eliassi-Rad of Northeastern University, Dr. Ali Pinar and Dr. Jeremy DWendt of Sandia

National Lab) for the valuable discussion, advice and ideas.

I also extend my sincere thanks to all my friends in the SUNS and SENSE labs, who made my time

in Syracuse so memorable.

v

Contents

List of Figures x

List of Tables xiv

Dissertation

1 Introduction 1

2 Background 6

2.1 Graphs . 6

2.2 Centrality Measures . 8

2.3 Dense Substructures . 9

2.3.1 Community . 10

2.3.2 k-Core . 10

3 Related Works 12

3.1 k-Core Decomposition . 12

3.2 Applications of k-Core . 14

3.3 Changes to k-Core Structure . 15

3.3.1 Core Structural Change . 15

3.3.2 Core Minimization . 15

3.3.3 Graph Unraveling . 16

4 Core Structural Changes 18

vi

4.1 Core Resilience . 19

4.2 Motivating Applications . 20

4.2.1 Anomaly Detection . 22

4.2.2 Community Detection . 22

4.3 Characterizing Core Resilience with Node Level Properties 23

4.3.1 Notations . 24

4.3.2 Core Strength . 25

4.3.3 Core Influence . 26

4.3.4 Core Influence-Strength . 27

4.3.5 Experiments . 28

4.4 Improving the Core Resilience of a Network . 29

4.4.1 Generating Candidate Edges . 30

4.4.2 Assigning Edge Priority . 32

4.4.3 Experiments . 34

4.5 Conclusion . 37

5 Core Minimization 38

5.1 Motivating Application . 39

5.2 Characterizing the Resilience to Collapsed k-Core . 40

5.2.1 Core Instability . 41

5.2.2 Experiments . 44

5.3 Anchoring Nodes to Minimize Collapse . 46

5.3.1 Shortcoming of Naive Method . 46

5.3.2 Maximizing the Collapse Resilience of the k-Core 47

5.3.3 Experiments . 51

5.4 Conclusion . 53

6 Graph Unraveling 56

vii

6.1 Motivating Example . 58

6.2 Anchored k-Core Problem . 59

6.3 Problem Definition . 59

6.4 Need for Look-Ahead Ability . 61

6.5 Method: Residual Core Maximization . 63

6.5.1 Candidate Followers and Anchors . 63

6.5.2 Residual Degree . 65

6.5.3 Residual Core . 66

6.5.4 Bounds on the Number of Anchors . 67

6.5.5 Residual Anchor Selection . 69

6.5.6 Anchor Score based Anchors Selection . 72

6.5.7 Residual Core Maximization . 73

6.6 Running Time of RCM . 74

6.7 Experiments . 77

6.7.1 Comparison Against Baseline Algorithms . 77

6.7.2 Comparison with Optimal Solution . 79

6.7.3 Experimental Analysis of RCM . 80

6.8 Conclusions . 82

7 Skeletal Core Graph 83

7.1 Skeletal Core Graph . 85

7.1.1 Categorization of Skeletal Core Graphs . 87

7.1.2 Skeletal Core Subgraph of a Graph . 89

7.1.3 Generative Model for Random Skeletal Core Graph 92

7.2 Skeletal Core Graph and Core Structural Change . 99

7.2.1 Core Resilience of Skeletal Core Graph . 100

7.2.2 Core Resilience of Decentralized Core Skeletal Graphs 105

7.2.3 Core Resilience of Centralized Core Skeletal Graph 106

viii

7.2.4 Core Resilience of Centralized vs Decentralized Skeletal Core Graphs 107

7.2.5 Experiment . 107

7.3 Skeletal Core Graph and Graph Unraveling . 108

7.3.1 Number of Anchors and k-Centralized Score 110

7.3.2 Experiments . 111

7.4 Conclusion . 112

Appendices 113

A Core Structural Change 114

A.1 Edge Deletion and Node Deletion . 114

A.2 Datasets . 115

B Graph Unraveling 116

B.1 Dataset . 116

C Skeletal Core Graph 117

C.1 Dataset . 117

References 118

Vita 129

ix

List of Figures

1.1 Visualization the Zachary Karate Club Network [97]. The dots represents people, and

the connections represent interaction between people. Two nodes are connected if

they interact with each other. 2

2.1 An example graph showing the k-cores and the k-shells. The subgraph induced by

the red nodes is the 3-core, the one induced by the red and green nodes is the 2-

core, and the entire graph is a 1-core. The red, green and blue nodes by themselves

induces the 3, 2, and 1-shells. 11

4.1 Toy examples showing a case where k-core structure does not change much (Fig-

ure 4.1a), and one where it changes a lot (Figure 4.1b). 19

4.2 Similarity between anomalies (Figure 4.2a) and communities (Figure 4.2b) found in

the full network G and the sample G ′ for di�erent real-world networks. The x -axis

is the Core Resilience (Rn(0,50)
50 (G)) of the di�erent networks against node deletion,

and the y -axis is the Jaccard Similarity. As expected, in the networks with high Core

Resilience, the results on the sample is more similar to that on the full network in

general. 21

4.3 Core Resilience (R·(0,50)
100 (G)) against Core Influence-Strength (CIS95 (G)) for vari-

ous networks. Figure 4.3a shows the core resilience against edge deletion vs Core

Influence-Strength, and Figure 4.3b shows the core resilience against node deletion

vs Core Influence-Strength. We can observe that the Core Resilience is higher for net-

works with higher Core Influence-Strength, which is consistent with what we expect. 29

x

4.4 Change in Core Resilience against percentage of new edges added for di�erent real-

world networks. The y -axis is the core resilience and the x -axis is the percentage of

new nodes added by the di�erent algorithms. The figures in the le� column (Figures

4.4a, 4.4c, 4.4e, 4.4g) are for edgedeletion, and those in the right column (Figure 4.4b,

4.4d, 4.4f, 4.4h) are for node deletion. In all cases, MRKC outperforms the baselines. . 35

4.5 Running time of our method for improving core resilience (MRKC) on di�erent net-

works. The x -axis is the amount of new edges added (in %), and the y -axis is the

time taken to add the edges (in seconds). 36

5.1 A toy graph showing collapsed k-core. The entire graph is a3-core; but if the rednode

is deleted, all the rest of the nodes are no longer in the 3-core. 38

5.2 An example of a core unstable subgraph. The number inside the nodes are the rela-

tive core strength of the nodes. Notice that if any edge that has a node with relative

core strengthof1asoneendpoint is deleted, the entire structure collapses, andnone

of the nodes in the subgraph are in the k-core. 42

5.3 Fraction of nodes that collapsed due to random edge (fig. 5.3a), random node (Fig-

ure 5.3b) and greedy node [99] (Figure 5.3c) against the Core Instability for various

real-world graphs (denoted by the dots). Here, the number of nodes or edges deleted

is 20 (5 for greedy node deletion), and we consider the 10-core. We can observe that

in networks with higher core instability, the collapse is higher. 45

5.4 Toy example demonstrating the shortcomings of the naive method of anchor selec-

tion in increasing the collapse resilience. In the naivemethod, either nodeAorB will

be selected as anchors. However, we can see that even a�er anchoring nodeA orB ,

any edge deletion collapses the entire 3-core. 47

5.5 Toy example demonstrating the shortcomings of the naive method of anchor selec-

tion in increasing the collapse resilience. 50

xi

5.6 Fraction of nodes that collapsed from the 10-core against the edges/nodes removed

for di�erent number of anchors selected through CIM. The di�erent lines represents

di�erent amount of anchor nodes. It can be observed that in all the cases, selecting

more anchors results is lower fraction of collapsed nodes. 52

5.7 Fraction of nodes that collapsed from the 10-core against the edges/nodes removed

for di�erent anchor selection algorithms. The di�erent lines represents di�erent an-

chor selection algorithms. It can be observed that in all the cases, CIM outperforms

all the other algorithms. In bio-celegans network, anchors selected basedon Degree

performs as well as CIM. In all these experiments the number of anchors is 25. 54

6.1 An anchored k-core example. The green nodes form a 3-core. If the red node is an-

chored, the entire graph becomes an anchored 3-core. 57

6.2 Relation between fk and k/kmax for di�erent networks. fk is the ratio of candidate

followers that are in the (k − 1)-shell to the total candidate followers. Note that the

ratio decreases rapidly as k increases, indicating that a greedy approach that focuses

on (k − 1)-shells may not perform well. Here, LB and SC are di�erent networks (de-

scribed in Table ??). 62

6.3 In this example, we seek tomaximize the size of the anchored 6-core. The red nodes

are the candidate anchors, the green nodes are in 4-shell and blue nodes are in 5-

shell. The edges between the6-core and the rest of the nodes are shownwith dashed

lines and the number represents the number of edges. 62

6.4 The nodes inside the box formG ′, and the number represents their residual degrees.

The red nodes are the nodes inCa \Cf . The green nodes and blue nodes areV ′i and

V ′o respectively. 68

xii

6.5 Number of followers found by RCM and various baselines (at k fixed at the median

value). In Figure 6.5a, the number of followers against the budget is shown for some

selected networks. In 6.5b, the number of followers at b = 250 for all the networks

considered is shown. Only RCM and the best baseline is shown. We can see that RCM

selects the anchors that result in the largest number of followers in all cases. (Higher

values are better.) . 78

6.6 Average time to find a follower by RCM and baselines. In Figure 6.6a, the the time

at di�erent budgets is given for selected networks, and in Figure 6.6b the time at

b = 250 is shown for RCM and the best baseline. The value of k is given in Table B.1.

RCM is much faster than the baselines in all the cases. (Lower values are better.) . . 80

6.7 Experimental results for analysis of RCM. Figure 6.7a shows the contribution of di�er-

ent parts of RCM, Figure 6.7b shows the speedup due to parallel computation, and

Figure 6.7c shows the running time against |Efa|. 82

7.1 Toy example showingDecentralized (Figure 7.1a andCentralized (Figure 7.1b) Skeletal

Core Graphs. Here the red, green and blue nodes have core numbers of 3, 2 and 1

respectively. In Figure 7.1a, we can see that all the nodes connects to a node in the

degeneracy core (rednode). In Figure 7.1b all the nodes are connected to another one

with the same core number. 88

7.2 Di�erent skeletal core graphs falls between centralized and decentralized core graphs. 88

7.3 Example graph demonstrating the non-uniqueness of skeletal core subgraph. 91

7.4 CoreCentralizedScore (x-axis) vsCoreResilience (y-axis) for various real-worldnetworks.108

7.5 Simulation results relating the fractionof followersagainst theCoreCentralizedScore

(Figure 7.5a) and αR (Figure 7.5b). As expected we can see in Figure 7.5a that the frac-

tion of followers increases with core centralized score initially, but decreases a�er

reaching somepeak. In Figure 7.5b,we can see that the fractionof followers increases

with αR as expected theoretically. 111

xiii

List of Tables

1.1 Possible changes to a network’s k-core structure, their e�ects, and causes. 5

4.1 Improvement in Core Resilience of the top 50% nodes (by core number) on adding

5% new nodes by MRKC, random (RANDOM), highest mean degree (DEGREE) and high-

est mean core number (CORE) of the endpoints. It can be observed that MRKC outper-

forms all the baselines. 33

5.1 Values of α(∗) for the toy example. 51

6.1 Notations used in this chapter. 60

6.2 Comparison of RCM, OPT and OLAK. Observe that in all the cases, RCM is very close the

OPTwhile being multiple magnitudes faster. 81

7.1 Notations used in Chapter 7. 85

A.1 Real-world networks used for experiments. In this table, |V | is the number of nodes,

|E | is the number of edges, and k∗ is the degeneracy. These datasets were down-

loaded from SNAP (denoted by †), and Network Repository (denoted by ‡). 115

B.1 Statistics of the real-world networks used in our experiments. |V | and |E | are the

number of nodes and edges respectively; kmax and kmid are the maximum and me-

dian values of the coreness of all the nodes. |Ca| and |Cf | are sizes of the candidate

anchors and followers for kmid . |Efa| is the number of edges in the subgraph induced

withCf ∪ Ca, and |G| is the number of connected components. 116

xiv

C.1 Data sets used for experiments in Chapter 6. 117

xv

The Resilience of k-Core in Graphs

Chapter 1

Introduction

A graph,G = 〈V ,E 〉, is as structure that consists of a set of vertices,V , and connections between

pairs of vertices, denoted by E . In the literature, the terms “network”, “nodes” and “links” are inter-

changeably used for graph, vertices and edges respectively. In the real-world we encounter various

type of data that can be modeled as a graph. For example, a social network can be represented

by a graph where the nodes are the users and edges represent friendships. Another example is a

protein network; the proteins are the nodes and two nodes are connected by an edge if they have

an interaction.

When the edges have directions, the graph is called a directed graph; otherwise it is called an undi-

rected graph. Examples of directed graphs includes Twitter followers network, email networks, food

web etc.; and Facebook friendship network, protein interaction networks, etc. are some examples

of undirected networks. In this dissertation, when we talk about graph we are referring about undi-

rected graphs. In the case of directed graphs, similar ideas as presented can be extended a�er we

take into account the edge direction.

To visualize, graphs are represented by circles (or dots), representing the nodes, and lines connect-

ing them, representing the edges. In the case of directed graphs, the edges have an arrow pointing

denoting its direction. Figure 1.1 shows a visualizationof the Zachary Karate ClubNetwork [97]. Here,

the nodes are people, and two nodes are connected if they interact with each other.

1

Figure 1.1: Visualization the Zachary Karate Club Network [97]. The dots represents people, and the
connections represent interactionbetweenpeople. Twonodesareconnected if they interactwitheach
other.

There are a number of tools and techniques available for analysis of graphs. Representing real-

world structures by graphs allows us to better understand and analyze them. For example, if we

want to find an important person in a social network, we can use the concept of node centrality

(Section 2.2) on the graph. If we are interested in understanding the higher level organization of the

world wide web – such as the pattern of connections between group of websites that frequently

link to each other and to others that rarely link to each other – we can study the dense substruc-

tures (Section 2.3) of the graphs.

Frequently, we may need to analyze only a part of the entire graph – in such case we consider the

relevant subgraph. A subgraph of a graphG , is another graphG ′ = 〈V ′,E ′〉, such that (1) V ′ ⊆ V

and (2) E ′ ⊆ E . In other words, a subgraph ofG is the collection ofV ′, a subset of the nodes inG ,

andE ′, some or all the connections between nodes inV ′ inG . IfE ′ is the set of all the connections

betweenV ′ that exist inG , we call that subgraph the induced subgraph ofV ′.

Although a subgraph can be induced from any subset of nodes, certain types of subgraphs are of

2

special interest, because they give us insight into the organization of the network. Some common

ones includes communities [41], k-cores [88], k-truss [29], k-peak [44] etc.

In thiswork,we focusour attentiononk-cores. A k-core is definedasthemaximal subgraph such that

all nodes in the subgraph have at least k connections to other nodes in the subgraph (Section 2.3.2).

By changing the value of k , we can get subgraphs of di�erent importance/centrality. We refer to the

hierarchical organization of the k-cores for di�erent values of k as the k-core structure. In general for

higher values of k , the resulting subgraph is considered more central/important. The largest value

of k such that a node belongs to that k-core is called the core number of that node. As an example,

k-cores have been used in many important applications, such as identifying important proteins

in protein-protein interaction networks, identifying anomalies (bots) in social networks, speed up

community detection, study ecology collapse etc. Refer to Section 2.3.2 for amore thorough review

about k-cores.

Because k-cores are used in so many applications, it is important to understand their resilience

to errors or changes in the graph. Collection of data is not always perfect – some edges or nodes

might have been missed. In such cases, how much does this missing data a�ect the detected k-

core structure? In some networks the missing data can drastically alter the output of an analysis

that uses the k-core structure; while it is relatively una�ected in some others. So, understanding

this resilience can help us gain better insight into data being analyzed.

In this dissertation we study three di�erent type of changes to the k-cores structure of a graph: (1)

Core Structural Change (Chapter 4), (2) Core Minimization (Chapter 5), and (3) Collapsed k-Core

(Chapter 6).

Core Structural Changes (Chapter 4): To study a network, we first need to collect the graph data

– which nodes are present, and how are they connected to each other? The collected data may be

imperfect, and inmany cases, theremay bemissing data. In the chapter on core structural changes,

we consider the change in the relative ordering of nodes based on their core number core numbers

3

whenedges (or nodes) aremissing. The corenumbersof nodesare a formofnodecentrality –nodes

with higher core number can be considered as more important than those with lower values. This

is important in a lot of applications such as finding anomalies [89], finding influential spreaders

[3, 50, 59] etc.

In Chapter 4, we study this type of change and propose a measure to quantify the resilience of a

graph to such changes.Wealsoproposemeasures that are fast to compute and can serve asproxies

for this measure. Finally we propose an algorithm (MRKC) to add edges to a graph to maximize this

resilience [53].

CoreMinimization (Chapter 5):Wealso comeacross applicationswhere theordering of the nodes

is not important – rather, what is important is the size of the k-core. Such applications includes

the study of ecology collapse [71], jamming transitions [70], etc. Zhu et al. studied this problem as

the core minimization – which are the b edges/nodes such that if deleted, the size of the k-core is

minimized?

In Chapter 5, we study the resilience of graphs to coreminimization – specifically, given a graph how

can we characterize the extent to which it can be a�ected by core minimization if there are missing

data or targeted attacks based on previous works. We propose a measure that is e�icient to com-

pute and, motivated by this measure, propose a novel algorithm (CIM) to maximize the resilience

of a graph to core minimization.

Graph Unraveling (Chapter 6: In this chapter, we do not deal with missing data but rather, the

natural tendency of the nodes in some type of networks to remain in the network only if they have

su�icient number of neighbors. In many networks users stay active due to their neighbors. For ex-

ample, a social network users remain active only if they have k active friends – otherwise they will

become inactive themselves. This might trigger a cascading collapse of the network until only the

k-core is le�. So, the goal is to select a fixed number of anchor nodes (i.e., nodes that can be incen-

tivized to remain in the network) to maximize the size of the k-core [14, 15, 98].

4

Type of Change A�ected Cause
Core Structural Change Order of nodes Missing data
Core Minimization Size of k-core Missing data or targeted attacks
Graph Unraveling Size of graph Cascading collapse

Table 1.1: Possible changes to a network’s k -core structure, their e�ects, and causes.

In Chapter 6, we study this problemof finding anchor nodes tomaximize the size of the anchored k-

core.We propose a novel algorithm (RCM) that considers not only the immediate e�ect of an anchor

node, but also the e�ect on subsequent anchor node selection.

Skeletal Core Graph (Chapter 7): Finally in Chapter 7, to investigate the graph structures that lead

to di�erent behavior in response to these type of changes, we propose the idea of the skeletal core

graph. We define a skeletal core of a graph as aminimal subgraph that preserves nodes’ core num-

bers (i.e., removing even one edgewill result in at least one node changing core number). Based on

the connections between the di�erent k-shells,1 we describe two skeletal core graphs: the decen-

tralized skeletal core and the centralized skeletal core graph. We then show how these relate the

resilience of the k-core structure of graphs.

The major contribution of this dissertation can be summarized as follows:

1. We study the resilience of the k-core structure of graphs to di�erent type of changes and how

we can measure and characterize them.

2. For type of change, we propose novel algorithms that tell us what small modification we can

make to the network to improve its resilience.

3. Finally, we propose a type of graph called the skeletal core graph to explain the behavior of

di�erent graphs to these di�erent type of changes.

1The k-shell is the subgraph induced by all the nodes that have a core number of k .

5

Chapter 2

Background

In this chapter we present the background required for the rest of this dissertation. We will present

a detailed discussion about graphs, centrality measures on graphs, dense substructures on graphs

and, finally,k-cores.Westartwithan introduction tographs. Additional chapter-specificbackground

is provided in the appropriate chapters.

2.1 Graphs

A graph G is an ordered pair of disjoint sets 〈V ,E 〉 such that E ⊆ V 2 [18]. The elements in V are

called the vertices or nodes; and those in E are called edges or links. If there is an edge (u, v) ∈ E ,

we say that the nodes u and v are connected (or adjacent, or neighbors) – in this case nodes u and

v are the endpoints of the edge (u, v). In some applications, wemight allow for edges where both

the endpoints are the same nodes. This is called a self-loop; and in this work we assume that no

graph have self-loops. When we think about graphs, it is helpful to visualize it with circles (or dots)

as nodes and lines connecting them as edges.

Agraphcanbeused tomodel anumberof real-world systems. For example, consider theworldwide

web (WWW). The web pages can be represented by nodes and hyperlinks can be represented as

edges. Another example is a social networkwherenodes arepeople andedges represent friendship.

6

Similarly, various other real-world structures fromdiverse domains can bemodeled by graphs. Due

to this the study and understanding of various properties of graphs is extremely important.

In some graphs, the direction of the edges is not important; that is (u, v) = (v , u). An example

of such a graph is a friendship graph. These are called undirected graphs. Contrast that with the

exampleof theWWW. In this case, thedirectionof thehyperlinks is important; that is (u, v) 6= (v , u).

This is called a directed graph. In this work, we assume that all the graphs are undirected.

A graphG ′ = 〈V ′,E ′〉 is said tobea subgraphofG = 〈V ,E 〉 ifV ′ ⊆ V andE ′ ⊆ E . A subgraphG ′

that contains all the edges that connects all the edges that connects thenodes inV ′ inG is calledan

induced subgraph; that isE ′ = (V ′)2∩E . There are caseswherewe are interested in studying only

a part of the graph – for examplewemight be interested in studying only the friendship network of a

certain age-group. Then, we can study the induced sub-graph of the nodes thatwe are interested in.

In other cases, wemay need to study a subgraph becausewedonot have access to the entire graph

or the entire graph is too large. In such cases, we need to keep inmind the properties that we want

to study and select appropriate methods for generating the subgraph [9, 52, 55, 62, 63, 64, 95, 93].

In a graph the neighbors of a node v ∈ V is the set of all the other nodes that have a edge to v . We

denote it denote by ΓG(v) and formally,

ΓG(v) = {u ∈ V : (v , u) ∈ E} .

If the graph G is clear from the context, we can drop the subscript G . The number of neighbors of

a node is called the degree of the node. That is,

d(u) = |Γ(u)|. (2.1)

Graphs can also be represented in matrix form. Assuming that |V | = n, the adjacencymatrix,A, of

7

G is an n × nmatrix such that,

Au,v =

1 if (u.v) ∈ E .

0 otherwise.

(2.2)

Consider the example of the world wide web (WWW). When a user browses the WWW, she starts

from some webpage v0 and clicks on a link to get to another v1, and clicks on another link on v1 to

get to v2, etc. This is called awalk on the graph. Awalk on a graph is defined as a sequence of edges

that connects as sequence of nodes starting from v0 and ending at vx . It is not necessary for the

starting and ending node to be distinct, and the vertices that a walk passes through might also be

repeated. If we restrict a walk to only pass through each node once, we get a simple path. In many

graphs, the shortest path between pairs of nodes is an important property, and it is the minimum

number of nodes in a simple path from nodes v0 to vx .

In some graphs it might not be possible to reach every node with a walk starting from some other

node. So, the idea of connected component is important here. A connected component is a sub-

graph such that every node in the subgraph can be reached by a walk from any other node in the

subgraph. We say that a graph (or subgraph) is disconnected if it has more than one connected

components.

2.2 Centrality Measures

As described in the introduction, an important concept when we use graph for analysis of a real-

world network is the concept of centrality – which are the important/central nodes? Various mea-

sures havebeenproposed that capturedi�erent ideasof importance – there are some that captures

importancewith the ideaof popularity, someconsider flow in annetwork, andothers looks at paths

in the networks. In this section, we discuss some of the important centrality measures.

8

Degree Centrality: The degree centrality of a node v is the fraction of nodes that are connected

to v . For v ∈ V , the normalized degree centrality is given by |Γ(v)|
|V |−1

. In many social networks, the

degree centrality is a agoodmeasureof importancebecause importantpeople generally havemore

connections.

Eigenvector Centrality: In many cases, only the number of connections is not a good indicator of

importance. For example, in the WWW a webpage v may be connected to a lot of other web pages,

but if those are not important, v is likely not as important as another u that has fewer, butmore im-

portant, connections.. This is the motivation of the eigenvector centrality [73], and the eigenvector

centrality of node v defined as the v -th entry of the vector x such thatA · x = λ · x.

BetwennessCentrality: In a communicationnetwork, the shortest paths are very important. This is

the idea behindbetweenness centrality, which is defined as the sumof the fraction of shortest paths

that pass through the node [37]. Because calculating the betweenness centrality requires compu-

tation of shortest path between all pairs of nodes, it is very expensive for large graphs. However,

approximate methods have been proposed [21].

Closeness Centrality: Another centralitymeasure thatmakes use of the shortest paths isCloseness

Centrality. The closeness centrality of a node is defined as the reciprocal of the average shortest

path length to all nodes that can be reached by awalk [13]. Like in the case of betweeness centrality,

computation of closeness centrality is also very expensive on large graphs.

2.3 Dense Substructures

There are many ways to describe hierarchical structures in graphs, such as k-core [88], k-truss [30],

k-peak [44], communities [74] etc. In this section, we will provide some background on some of

these structures.

9

2.3.1 Community

Oneof themost commonlyuseddense substructure ingraphsare communities. Communitieshave

many definitions, but in general, a good community is one that hasmore internal connections than

expected. In [74] Newman & Girvan proposed ‘modularity’ as a measure of the strength of commu-

nity structure, and algorithm based on modularity maximization have become some of the most

popular techniques for community detection.

Various community detectionmethods based onmodularity maximization has been proposed [28,

72, 16, 77]. However, one of themost popular is the ‘Louvainmodularity maximization’ proposed by

Blondel et al.. This is a greedy algorithm to find communities in a network by grouping nodes in

such a way as to maximize the modularity. Community detection methods based on modularity

su�ers from the resolution limit [56]; nonetheless they remain popular for their e�ectiveness and

e�iciency. Other methods of community detection includes random walk based methods [17, 84],

statistical inference [78, 47] etc.

2.3.2 k-Core

The k -core of a graph,G = 〈V ,E 〉, is the maximal subgraph such that every node in the subgraph

has at least k neighbors in the subgraph [88, 66]. If a node belongs to the k-core but not in the

(k + 1)-core, we say that the coreness (or core nummber) of the nodes in k . We will denote this by,

κ(u,G) for u ∈ V . The coreness of a node can also be considered as a centrality measure.

The subgraph induced by the by the nodes with coreness of k is called the k -shell. Note that the

k-core and k-shell need not be connected. In a graph the largest value of k such that the k-core is

not empty is called the degeneracy of the graph, and the associated core is called the degeneracy

core.

Figure 2.1 shows a toy example demonstrating the di�erent k-cores and k-shells. We can see that

10

3-Core
1-Core

2-Core

Figure 2.1: An example graph showing the k -cores and the k -shells. The subgraph induced by the red
nodes is the 3-core, the one induced by the red and green nodes is the 2-core, and the entire graph is
a 1-core. The red, green and blue nodes by themselves induces the 3, 2, and 1-shells.

all the red nodes have 3 other red nodes as neighbors. So, they form the 3-core. Similarly, the green

nodes have 2 neighbors that are either red or green; and thus form the 2-shell. Together with the

red nodes, they form the 2-core Finally, the entire graph forms a 1-core. The red, green and blue

nodes by themselves induces the 3, 2, and 1-shells.

The process of finding all the k-cores in a graph is called k -core decomposition. There is an e�icient

algorithm for performing a k-core decomposition [10]. The algorithmworks by iteratively removing

nodes that have less than k neighbors and stopping when there are nomore nodes to remove. The

running time of this algorithm scales linearly with the number of edges.

11

Chapter 3

Related Works

In this chapter, we describe previous literature related to k-core and related areas.

3.1 k-Core Decomposition

Erdos and Hajnal [34] described the first k-core related concept in 1966, defining the degeneracy of

the graph as the maximum core number of a vertex in the graph. Matula introduced the min-max

theorem [67] for the same concept, but in the context of graph coloring. Roughly simultaneously,

Seidman [88] and Matula and Beck [66] defined the k-core subgraph as the maximal connected

subgraph where each vertex has at least degree k .

Seidman stated that k-cores are good seedbeds that can be used to find further dense substruc-

tures, but did not provide a principled algorithm for finding k-cores [88]. Matula and Beck [66], on

the other hand, give algorithms for finding the core numbers of vertices, and for finding all the k-

cores of a graph (and their hierarchy) by using these core numbers, since there can be multiple

k-cores for the same k value.

Batagelj and Zaversnik introduced an e�icient implementation that uses the bucket data structure

to find the core numbers of vertices [10]. In contrast to previous work [88, 66], they defined the k-

core as a possibly disconnected subgraph.

12

The k-core decomposition has been used in numerous applications, including network visualiza-

tion [5, 99, 102], studying the topology of large networks (such as the Internet) [8, 24], accelerating

community detection [79], and studying the resilience of communities [38].

k-cores have been used for applications in a variety of scientific fields. Altaf-Ul-Amine et al. pro-

posed amethod for predicting the functions of proteins based on the k-core decomposition of the

protein-protein interaction network [4]. In [70], Monroe et al. explained jamming transitions (when

particles are packed such that movement is not possible) by the emergence of the k-core in the

particle contact network. In [71], the authors used the k-core to predict the structural collapse of

ecosystems.

Thanks to the practical benefit and linear complexity of the k-core decomposition, there has been

a great deal of recent work in adapting k-core algorithms for di�erent data types or setups. Cheng

et al. [25] introduced the first external-memory algorithm, andWen et al. [94] andKhaouid et al. [49]

provided further improvements in this direction.

To handle the dynamic nature of the real-world data, Sariyuce et al. [85] introduced the first stream-

ingalgorithms tomaintain thek-coredecompositionof a graphuponedge insertions and removals.

Lie et al. [58], Zhang et al. [101], and Esfandiari et al. [35] have also introducedmethods tomaintain

k-core structure in the case of streaming data.

Motivatedby the incompleteanduncertainnatureof the real networkdata,O’BrienandSullivan [76]

proposed new methods to locally estimate core numbers (K values) of vertices when the entire

graph is not known, and Bonchi et al. [20] showed how to e�iciently perform the k-core decompo-

sition on uncertain graphs, which has existence probabilities on the edges.

There has been a lot ofworks on extending the notion of k-cores to other network settings. Sariyuce

et al. generalized k-cores to higher order structures [86], and Giatsidis et al. adapted the idea of k-

cores to directed and weighted graphs [39, 40].

13

3.2 Applications of k-Core

In [51], the authors studied an extremist web forum– the nodes are users andmessage threads; and

there is an edge between a user and message thread if the user posted in that thread. They found

that the users who has high core number (k = 8 in their dataset) are the influential advisors within

the extremist network.

k-cores can be used to find bots in social networks. In [89], Shin et al. developed a method to find

anomalous nodes (bots) in a social network based on their core number and degree. They found

that, in general, nodes in a social network follows a ‘mirror pattern’ – the core number of a node

is strongly correlated with its degree. They found that anomalous nodes deviates from this pattern

and proposed a method to measure the deviation from the mirror pattern to detect anomalies.

k-core has also been used for anomaly detection in transcriptional regulatory networks [91], be-

havior of customers in online banks [90], online user generated contents [19], internet routing [69],

wallets on crypto-currency platform [80] etc.

The study of influential spreaders in social networks is another area where k-cores have been ap-

plied with promising results. In [3], the authors proposed amethod of assigning edge weights in an

online social network. They, then, proposed a weighted k-core and showed that this method can

capture influential spreadersmore e�ectively than othermeasures like PageRank, degree centrality

etc.

In [82], the authors evaluated the e�ectiveness of di�erent types of centrality measures in finding

the di�erent types of influential spreaders using the SIRmodel [48]. They found that the influential

spreaders identified by k-core are the ones that can reach the furthest distance in the graph the

fastest. In addition to these works, there has also been a plethora of works that uses k-core and

variants to identify influential spreaders [33, 43, 59, 61, 89, 96].

Other applicationsofk-core includesnetwork visualization [7, 23, 32, 75, 100], studying the topology

14

of large networks (such as the Internet) [6, 24], accelerating community detection [79] etc.

3.3 Changes to k-Core Structure

Data collection is not always perfect – sometime there are missing edges or nodes. It is even possi-

ble that there are missing data due to attacks. In this section, we present some of the recent works

on the di�erent type of changes to the k-core structure due to missing data.

3.3.1 Core Structural Change

There are only a few works that study the sensitivity of the order of nodes based on their core num-

ber. Most closely related to our work is the study by Adiga and Vullikanti, investigating the robust-

ness of the top cores under sampling and in noisy networks [1]. They reported that the success

in recovering the top cores under sampling and noise exhibits non-monotonic behavior with the

amount of samples and noise.

In [53], we proposed a measure for the resilience of the k-core structure and a method of inserting

edges to improve the resilience. In our work, we follow a more general approach and quantify the

resilience of the core numbers, and the impact of the neighbor vertices on the stability. In addition,

we propose edge insertion heuristics to strengthen the core numbers while preserving the existing

core decomposition.

3.3.2 Core Minimization

There have been a few recent works that core minimization, but most of them focus on finding

nodes/edges to remove that minimizes the k-core the most. Zhang et al. [99] studied this prob-

lem with the objective of finding the critical users. They defined the critical users as those whose

removal from the network will lead to the size of the k-core being minimized. They proposed a

15

greedy algorithm called CKC to e�iciently find a given number of critical users.

Zhu et al. [104] also studied the problemof k-coreminimization.What di�erentiates their work from

the previous onewas that theywere focused on finding the critical edges – that is, the edgeswhose

removal leads to the minimization of the k-core. Medya et al. [68] also worked on the problem of

finding the critical nodes that leads to core minimization but approached it from a game-theoretic

perspective.

Schmidt et al. [87] studied the problemof finding theminimal set of nodeswhose removal destroys

the k-core. They relate it to the problem of finding the minimal contagious set [31, 81, 45, 36]. They

provided a upper bound on the size of the minimal contagious set, and provided a heuristic based

approach to finding it.

3.3.3 Graph Unraveling

The cascading collapse of a graph due to users, with not enough engagement leaving, was first de-

scribed by Bhawalkar et al. [14] as the anchored k -core problem. The problem was inspired by the

observation that a user in a social network is motivated to stay only if her neighborhood meets

some minimal level of engagement: in k-core terms, she will stay if k friends are also in the net-

work. Bhawalkar et al. defined the anchored k-core as the subgraph that is computed using the

usual k-core decomposition algorithm, but with the modification that selected ‘anchor’ nodes are

not deleted during the process. These anchored nodesmay represent, for example, nodes that are

recruited to remain active in the network, even if their friends are inactive. The anchored k-core

problem, then, is the problem of selecting a specified number b anchor nodes such that the num-

ber of nodes in the anchored k-core is maximized.

Bhawalkar et al. showed that for a general graph the anchored k-core problem is solvable in polyno-

mial time for k ≤ 2, but is NP-hard for k > 2 [15]. They also showed that the problem is W[2]-hard

with respect to the number of anchors and Chitnis et al. showed that the problem is W[1]-hard with

16

respect to the number of nodes in the anchored k-core [26].

Zhang et al. proposed a greedy algorithm, called OLAK, for the anchored k-core problem [98]. OLAK

operates over bmax iterations, where bmax is the allowable number of anchor nodes. In each iter-

ation, a node that is not in the anchored k-core but which would generate the largest number of

followers if anchored is selected as the next anchor. Because only a single anchor node at a time is

considered, and only nodes from the (k −1)-shell1 can become followers when anchoring a single

node, OLAK considers only follower nodes from the anchored (k − 1)-shell during each iteration.

Zhou et al. [103] studied a problem that is close to the anchored k-core problem – which edges

should be added to maximize the size of the k-core. However, this is fundamentally di�erent from

the anchored k-core problem because the graph cannot bemodified in the anchored k-core prob-

lem.

1The k-shell is the subgraph of the k-core \ (k − 1)-core.

17

Chapter 4

Core Structural Changes

In many network applications, we may encounter the problem of missing edges or nodes. For ex-

ample, in technological networks, edges may be lost due to dropped communication links, and in

router networks, nodesmightdropdue to routers being turnedo�.Or, in the caseof social networks,

edges or nodes might be missing during the data collection process.

It is thus valuable to understand the resilience of the k-core of the network to missing edges and

nodes. In this section, we introduce the concept of core resilience, which quantifies the degree to

whichanetwork’s core structure changeswhennodesor edgesaremissing. In this case,weconsider

only the case when nodes and/or edges are missing uniformly at random.

The first step in understanding how networks’ core structure change due to missing edges and

nodes is to define a metric to measure this. To this end, we propose the Core Resilience.

To demonstrate, consider the graph shown in Figure 4.1a. The red, green and blue nodes have core-

ness of 3, 2 and 1 respectively. If the dashed line is deleted, only one node changes coreness from

3 to 2. Contrast this with the graph in Figure 4.1b. In this case, if the dashed edge (or rather any edge

between red nodes) is removed, all the red nodes changes coreness from 3 to 2. So, the second

graph has a lower core resilience. This example also shows how inaccurate a study that uses k-core

can be if the original graph has very low core resilience.

18

(a) Example of case where k -core structure does not change a lot.

(b) Example of case where k -core structure changes a lot.

Figure 4.1: Toy examples showing a case where k -core structure does not change much (Figure 4.1a),
and one where it changes a lot (Figure 4.1b).

4.1 Core Resilience

Formally,we define the (r , p)-core resilience of a networkG as the rank correlation between the top

r% nodes (as ranked by core number) in the original network to that of the network a�er p% of the

the edges or nodes have been removed uniformly at random. We denote the (r , p)-core resilience

of a graph G to edge deletion by Re(p)
r (G), and that due to node deletion by Rn(p)

r (G). We will

useR·(p)
r to refer to (r , p)-core resilience in general. The intuition behind the core resilience is that

the ranking of the nodes by their core number reflects the k-core hierarchy – nodes that are ranked

higher (in descending order) are higher up in the hierarchy. So, a measure of rank correlation with

and without the missing data can measure the change in the k-core hierarchy.

Let G = 〈V ,E 〉 be a network, and let G p represent the network obtained removing p% of the

edges (or nodes) from G randomly. Let the top r% nodes (by core numbers) in G be denoted by

Vr . Define a setMpr such that,

Mpr := {(κ(u,G),κ(u,G p)) : u ∈ Vr} , (4.1)

19

where κ(u,G) is the core number of node u in networkG 1.

Then, the (r , p)-core resilience ofG is given by,

R·(p)
r (G) := τb (Mpr) (4.2)

where τb(·) is themodified Kendall’s tau-b rank correlation2. The definition is not tied the Kendall’s

tau-b rank correlation. We can replace τb(·) by any other measures of rank correlation.

WhileR·(p)
r gives rich, detailed insight into the core resilience of the di�erent cores of the network

at di�erent levels of edges or nodes deletion, in some applications it may be preferable to use a

simpler measure. We thus define an aggregate measure, the (r , pl , pu)-core resilience. We define

the (r , pl , pu)-core resilience of a network as the mean (r , p)-core resilience as we vary p from pl to

pu .We denote the (r , pl , pu)-core resilience ofG byR·(pl ,pu)
r (G).

R·(pl ,pu)
r (G) :=

∫ pu
pl
R·(x)
r (G)dx

pu − pl
(4.3)

In practice, we approximate the integral in Equation 4.3 by a summation with step size 1.

It should be noted that there are a number of graph robustness measures, but the concept of core

resilience specifically concerns the k-core structure of the network, and so is not directly related

to these existing measures. To verify this we compared the Natural Connectivity [46] to the Core

Resilience of various real-world networks, and did not observe any significant correlation.

4.2 Motivating Applications

The concept of Core Resilience is helpful in applications where the k-core structure of the network

undermissing edges or nodes is important. In this sectionwewill discuss two such applications: (1)
1If a node has been deleted, its core number inG p is 0.
2Wemake the modification to count ties as concordant pairs.

20

0.2

0.4

0.6

0.8

0.40 0.45 0.50 0.55

Core Resilience

J
ac
ca
rd

S
im

il
ar
it
y

(a) Results for anomaly detection.

0.25

0.50

0.75

0.40 0.45 0.50 0.55

Core Resilience

J
ac
ca
rd

S
im

il
ar
it
y

(b) Results for community detection.

Figure 4.2: Similarity between anomalies (Figure 4.2a) and communities (Figure 4.2b) found in the
full networkG and the sampleG ′ for di�erent real-world networks. The x -axis is the Core Resilience
(Rn(0,50)

50 (G)) of the di�erent networks against node deletion, and the y -axis is the Jaccard Similarity.
As expected, in the networks with high Core Resilience, the results on the sample is more similar to
that on the full network in general.

anomaly detection, and (2) community detection.

Assume that we have a networkG = 〈V ,E 〉 and a subgraphG ′ = 〈V ′,E ′〉, whereG ′ is the result

of randomwalk onG .

If we perform anomaly detection [89] or community detection [79] on G ′, how well do the results

on G ′ reflect the true anomalies and communities in G? Because these applications make use of

the k-core structures, we expect the results to more closely match that of the original graph if the

original graph has high core resilience.

We verify this experimentally onmultiple real-world networks, and the sample we use is generated

by a randomwalk with half the number of nodes in the network as the budget. (The dataset we use

are given in Table A.1.)

21

4.2.1 Anomaly Detection

In this application, we perform anomaly detection on the full networkG using the CORE-Amethod

proposed in [89] to find the anomalous nodesVα. Thismethodoperates on the intuition that nodes

with high core numbers also have high degrees. So for a given node, the di�erence between the

ranking in terms of the degree and core number (referred to as dmp in [89]) should be fairly small.

However, anomalousnodes (for example, someone in a social networkwhopaid to getmore follow-

ers) deviate significantly from this pattern. By looking at thedmp values of the nodes, the anomalies

are identified in the CORE-A algorithm.

We findanomalies in the subgraphG ′with the samemethod, and refer to the set of theseanomalies

asV ′α. We then use Jaccard Similarity to determine how close the result onG ′ is to that onG .

Jα(Vα,V ′α) =
|Vα ∩ V ′α|

|(Vα ∩ V ′) ∪ V ′α|

We present results in Figure 4.2a. We can observe that the anomalies found in the sample aremore

similar to those in the full network for networks with high core resilience.

4.2.2 Community Detection

By finding a central region of the network, k-cores can be used to accelerate community detection.

We perform community detection using the method proposed in [79] and the Louvain method on

the original network G . We denote the communities in G by C . Then, we perform community de-

tection with the samemethod onG ′, to get the communitiesC ′.

We compute the similarity betweenC andC ′ as themean Jaccard Similarity between the commu-

22

nities inC ′ to its best match community inC .

Jc(C ,C ′) =
1

|C ′|
∑
c∈C ′

|c ∩ β(c ,C)|
|c ∪ (β(c ,C) ∩ V ′) |

where β(x ,Y) is a function that maps the community x to another community y such that |x ∩ y |,

and there are no other x ′ ∈ X that maps to y .

Figure 4.2b shows the results of these experiments on community detection. In the networks with

higher Core Resilience, the nodes that are grouped together in the same community in the sample

are more frequently grouped together in the original communities as well. The only exceptions to

this are two P2P networks, for which the similarity is low even though they have relatively high core

resilience. This is because there are very few communities in the original network, but only a single,

giant community. So, β(c ,C) = ∅ for most c ∈ C ′.

These two applications demonstrate that if we know the Core Resilience of a network, we can use

it as an indicator of how much we should expect core-based observations on incomplete data to

reflect those on the original.

4.3 Characterizing Core Resilience with Node Level Properties

Computing the (r , p)-core resilience of a network requires repeated computation of the k-core. Be-

cause the time complexity of the k-core decomposition algorithm isO(|E |), it may not be practical

to compute the (r , p)-core resilience in larger graphs. It is thus valuable to characterize the core re-

silience of the network without directly computing the (r , p)-core resilience (and, as we will see,

this characterization allows us to develop an e�ective algorithm for improving a network’s core re-

silience).

In this section, we propose two node properties based on a network’s structure: (1) Core Strength,

and (2) Core Influence. The core strength of a node is a measure of how likely its core number will

23

decreasewhenedges aredeleted from thenetwork. The core influenceof anode is ameasureof the

extent to which nodes with lower core numbers depend on that node for their own core numbers.

In Sections 4.3.3 and 4.3.2, we describe the core influence and core strength properties in more

details.

We also define an overall network property, based on the core strength and core influence of the

nodes in the network. We describe this in more detail in Section 4.3.4. We perform experiments on

realworld networks of various types to show the relationship between thesemeasures and the core

resilience of the network.

4.3.1 Notations

Before describing the Core Influence and Core Strength properties, we first introduce some nota-

tions. We split the neighbors of u ∈ V into three sets: (1)∆<(u,G), (2)∆=(u,G), and (3)∆>(u,G)

representing, respectively the neighbors of uwith core number less than, equal to, and greater than

that of u.

∆<(u,G) = {v ∈ Γ(u) : κ(v) < κ(u)} (4.4)

∆=(u,G) = {v ∈ Γ(u) : κ(v) = κ(u)} (4.5)

∆>(u,G) = {v ∈ Γ(u) : κ(v) > κ(u)} (4.6)

∆≥(u,G) = ∆=(u,G) ∪ ∆>(u,G) (4.7)

We also define a set Vδ of nodes where each node u ∈ Vδ has at least one neighbor node, v , with

a larger core number, i.e.,K(u,G) < K(v ,G). That also means the following:

Vδ = {u ∈ V : |∆=(u,G)| < κ(u,G)}. (4.8)

24

4.3.2 Core Strength

The Core Strength of node u is the minimum number of u’s neighbors that need to drop to a lower

core for u to also drop to a lower core.

We denote the core strength of u in G by CS(u,G). The assumption that that the coreness of

the neighbors does not change is not necessarily required, but it makes computation of the core

strength very fast.

For all nodes u in network G , u gets its core number due to connections to ∆≥(u,G). Thus, the

core strength of node u ∈ G is given by,

CS(u,G) = |∆≥(u,G)| − κ(u,G) + 1. (4.9)

Intuitively, the core strength of a node u describes how likely it is to retain its core number when it

loses connections. A node with a high core strength has many redundant connections (i.e., many

connections to other nodes with equal or higher core number), and so is less likely to drop its core

number if its connections are deleted.

Algorithm 1 The algorithm to calculate the core strengths of all the nodes.
1: function CALCULATECORESTRENGTH(G = 〈V ,E 〉)
2: κ←CalculateCoreNumber(G)
3: CS ← {}
4: for u ∈ V do
5: CS [u]← |{v ∈ Γ(u) : κ(v) ≥ κ(u)}| − κ(u) + 1
6: end for
7: returnCS
8: end function

Theorem 4.1 (Complexity of Algorithm 1). The time complexity of Algorithm 1 is O(|E |); and the

space complexity isO(|V |).

Proof. Given a networkG = 〈V ,E 〉, computing the core strength of all the nodes is possible once

25

the k-core decomposition is performed, which takesO(|E |) time. For each nodewe need to count

the number of neighbors with greater or equal core number, which is also linear in the number of

edges,O(|E |) . So, the time complexity of computing the core strength of all nodes isO(|E |).

In Algorithm 1, the only additional space required is to store the core strengths of all the nodes. So,

the space complexity isO(|V |).

4.3.3 Core Influence

The Core Influence of a node u in network G is a measure of the extent to which u a�ects the core

numbers of neighbor nodes with lower core numbers.We denote it withCI (u,G).

For anodeu, the set of nodes that ‘immediately’ dependonu for their corenumbers is∆≤(u,G), i.e.

the neighbors of similar or lower coreness. If there is an edge (u, v) such that κ(u,G) = κ(v ,G),

both u and v influences each other for their coreness.

In order to compute core influence, the first step is to create amatrixM of size |V | × |V | such that,

Mu,v =

1 if u = v

κ(u,G)
|∆≥(u,G)| else if (u, v) ∈ E ∧ κ(u,G) ≤ κ(v ,G)

0 otherwise

. (4.10)

Let r be the eigenvector of the matrixM . Then, the core importance of node u is ru .

Theorem 4.2 (Complexity of Algorithm 2). The time complexity of Algorithm 2 isO(|E |); the space

complexity isO(|E |).

Proof. To compute the approximate core influence of all nodes in G = 〈V ,E 〉, we need to per-

form k-core decomposition first (O(|E |)). The matrixM can be created inO(|E |). With the power

method, the eigenvector can be calculated inO(|V |). So, the overall computation takesO(|E |).

26

Algorithm 2 The algorithm to calculate the core influence of all the nodes.
1: function CALCULATECOREINFLUENCE(G = 〈V ,E 〉)
2: κ←CalculateCoreNumber(G)
3: M ← 0|V |×|V |
4: for (u, v) ∈ E do
5: if κ(u) ≥ κ(v) then
6: x ← |{w ∈ Γ(v) : κ(w) ≥ κ(v)}|
7: Mu,v ← 1

x

8: end if
9: end for
10: r← EigenVector(M)
11: CI ← {}
12: for u ∈ V do
13: CI [u]← ru
14: end for
15: returnCI
16: end function

In Algorithm 2, the space needed to store the matrixM isO(|E |) assuming we store it as a sparse

matrix. So,t he space complexity isO(|E |).

Approximate Core Influence: In many applications we found that the influence of a node to other

nodes of higher coreness is more importance. So we can discard the contributions from the nodes

of same coreness to approximate the core influence. In that case, for (u, v) if κ(u,G) = κ(v ,G),

we setMu,v = 0. In this case, we can guarantee convergence in one step.

4.3.4 Core Influence-Strength

Core Strength and Core Influence describe node level properties. To characterize the network, we

need an aggregate measure that describes the network level property.

Assume that CIf (G) is the f percentile of core influence of all nodes in G . Let Sf (G) be the set of

nodes inG with core influence equal to or greater thanCIf (G).

Sf (G) = {u ∈ V : CI (u,G) ≥ CIf (G)} (4.11)

27

Then we define the Core Influence-Strength as the mean core strength of Sf (G). We denote it by

CISf (G),

CISf (G) =

∑
u∈Sf (G) CS(u,G)

|Sf (G)|
. (4.12)

If a network has highCISf (G) for high f , this means that themost influential nodes are unlikely to

drop their core numberwhen they lose connections to their neighbors.We expect such networks to

have high core resilience. In contrast, the networks for which CISf (G) is low are expected to have

low core resilience.

4.3.5 Experiments

To verify thatCIS reflects actual core resilience, weperformexperiments on22 real-world networks

of di�erent types (Table A.1). These networks were downloaded from SNAP3 and Network Reposi-

tory4. The Core Resilience (R·(0,50)
100 (G)) vs Core Influence-Strength (CIS95 (G)) for edge deletion is

shown in Figure 4.3a, and that for node deletion is shown in Figure 4.3b.

In these figures, each point is the core resilience of a network (with the network type color-coded),

and is the result of 10 experiments. We observe that, as expected, the resilience is higher for net-

works with high Core Influence-Strength. However the relation between Core Influence-Strength

and Core Resilience is sub-linear - that is it increases rapidly for low values, but for networks high

Core Influence-Strength the di�erence in Core Resilience is not significant. Additionally we observe

that the Core Resilience of P2P networks generally have lower Core Resilience, while that of SOC

networks tend to be higher in terms of both edge and node deletion.
3https://snap.stanford.edu/
4http://networkrepository.com/

28

0.4

0.5

0.6

0.7

0.8

0.9

10

Core Influence-Strength

C
or

e
R

es
il

ie
n

ce

(a) Core Resilience against Edge Deletion

0.3

0.4

0.5

10

Core Influence-Strength

C
or

e
R

es
il

ie
n

ce

(b) Core Resilience against Node Deletion

Figure 4.3: Core Resilience (R·(0,50)
100 (G)) against Core Influence-Strength (CIS95 (G)) for various net-

works. Figure 4.3a shows the core resilienceagainst edgedeletion vsCore Influence-Strength, andFig-
ure 4.3b shows the core resilience against node deletion vs Core Influence-Strength. We can observe
that the Core Resilience is higher for networkswith higher Core Influence-Strength, which is consistent
with what we expect.

4.4 Improving the Core Resilience of a Network

Now that we have defined the core resilience of a network and proposedmeasures to characterize

the core resilience of a graph, in this section we address the problem of ‘If we can add b edges, to

improve the core resilience of a network without changing k -core structure, where shouldwe add the

edges.

Our initial results in Section 4.3 suggest that edges should be added to bolster the nodes with high

Core Influence; i.e., give them higher Core Strength, in order to increase the core resilience of the

network as a whole. We propose a new algorithm calledMaximize Resilience of k-core (MRKC).

Node deletion can be considered a special case of edge deletion, as deleting a node is equivalent

to deleting the edges of that node (Appendix A.1). For this reason, the algorithm for improving the

core resilience of a network against edge deletion is the same as for node deletion.

The MRKC algorithm consists of two steps: (1) generating candidate edges and (2) assigning edge

29

priority. We discuss these steps in detail in Sections 4.4.1 and 4.4.2 respectively.

4.4.1 Generating Candidate Edges

Given a network G = 〈V ,E 〉, the first step in MRKC is to determine which edges can be added to

the networkwithout changing the k-core structure. LetG ′ be the graph a�er adding the edges, then

the k-core structure does not change if,

∀u, v ∈ V , κ(u,G)�κ(v ,G) =⇒ κ(u,G ′)�κ(v ,G ′), (4.13)

where� can be<,> or=. There are two ways to satisfy this:

1. The coreness of no nodes changes. That is, ∀u ∈ V , κ(u,G) = κ(u,G ′).

2. If the coreness of node u increases5, all the nodes with higher or same coreness also has to

increase by the same amount.

Because changing the coreness of a lot of nodes may not be possible in many cases (because we

might need to add more edges than allowed), we make sure that the coreness of no node change

during the edge addition.

Let E ′ be the set of edges that do not exist inG . The size of E ′ is on the order of |V |2. This is clearly

too many edges to check, so we need a method to quickly filter out the edges that would change

the coreness if added toG .

MRKC accomplishes this by adapting thepurecore-basedmethoddescribed in [85], which examines

the endpoint of each potential edge (the purecoreof a node u is the set of nodes that have the same

coreness as u and could be a�ected by a change in the coreness of u).

Let usdenote thepurecoreofnodeg in graphG byPC(u,G).We splitE ′ into twosetsEsim andEdif ,
5It is not possible for coreness to decrease due to edge addition.

30

such that, κ(u,G) = κ(v ,G) for all (u, v) ∈ Esim; and κ(u,G) 6= κ(v ,G) for all (u, v) ∈ Edif .

From the set Esim, we generate subsets E isim such that:

1.
⋃
E isim ≡ Esim; i.e. is all edges in Esim are in some E isim.

2. E isim ∩ E
j 6=i
dif ≡ ∅; i.e. all E isim are disjoint.

3. No two edges in E isim are connected via the nodes that have same core number with the

endpoints of those edges.

Because all the edges have endpoints that are not in the other’s purecore, we can insert E ′ to G ,

and if there is a node that changes coreness, we can pinpoint which edge in E ′ caused it. Assume

that there are nsim such subsets.

Similarly, we splitEdif into subsetsE idif in the sameway asEsim, but with additional conditions that

if there are two edges in E idif that have the same endpoints, the other two nodes cannot have the

same coreness.

Again in this case if on adding E idif to G , the coreness of any node changes, we can identify which

edge in E idif caused that. Let us assume that there are ndif such subsets.

Then, instead of checking all |E ′| edges one-by-one, we need to check only nsim + ndif times.

We can further speed up the generation of the candidate edges. Assume that E i· is the set of nodes

currently being tested. Let kmin and kmax be theminimumandmaximumcore number of the nodes

involved in E i· . Then, adding the E i· can only change the core numbers of nodes u where kmin ≥

κ(u,G) ≥ kmax .

So, instead of running k-core decomposition on the entire network a�er adding the edges, we can

add the edges to the kmin-core subgraph of the original network, and run the k-core decomposition

on the subgraph. Again because, no node with core number above kmax will be a�ected, we do not

need to run the k-core decomposition to completion - we can stop a�er the kmax -core has been

31

found.

4.4.2 Assigning Edge Priority

A�er obtaining the set of edges that can be added to the network, MRKC selects which subset of

edges to add. To do this, MRKC assigns each edge (u, v) ∈ E ′ a priority based its endpoints u and v .

As discussed before, the goal is to improve the core strength of the nodes with high core influence.

So the priority value for each node u is assigned as CI (u)
CS(u)

.

There are three cases that needs to be considered based on the coreness of the endpoints, u and

v : (a) κ(u,G) > κ(v ,G), (b) κ(u,G) < κ(v ,G), and (c) κ(u,G) = κ(v ,G).

In the case of κ(u,G) > κ(v ,G), addition of the edge (u, v) will only a�ect CI (v ,G); CI (u,G)

will be una�ected. On the other hand, if κ(u,G) = κ(v ,G), both CI (u,G) and CI (v ,G) will be

a�ected by addition of (u, v). So, for all (u, v) ∈ E ′, MRKC assigns priority as,

ρ(u, v) =

CI (u,G)
CS(u,G)

if κ(u,G) < κ(v ,G)

CI (v ,G)
CS(v ,G)

if κ(u,G) > κ(v ,G)

CI (u,G)
CS(u,G)

+ CI (v ,G)
CS(v ,G)

if κ(u,G) = κ(v ,G)

. (4.14)

At each step, MRKC selects the edge with the highest priority and adds it to the network until we

reach the budget, i.e., maximum number of edges allowed to be added. The set E ′ needs to be

updated a�er any edge (u, v) is inserted, but we can make it e�icient by checking only for those

edges that has an endpoint inPC(u,G)∪PC(v ,G). Updates to core influence and core strength

can also be done in similar way.

32

Edge Deletion (Re(0,50)
50) Node Deletion (Rn(0,25)

50)
Type Network Original MRKC RANDOM DEGREE CORE Original MRKC RANDOM DEGREE CORE

AS

AS_733_19971108 0.58 0.65 0.60 0.61 0.58 0.35 0.44 0.40 0.38 0.36
AS_733_19990309 0.62 0.72 0.65 0.67 0.62 0.36 0.48 0.41 0.43 0.37
Oregon1_010331 0.66 0.78 0.71 0.72 0.72 0.42 0.49 0.45 0.44 0.45
Oregon1_110428 0.67 0.79 0.72 0.72 0.71 0.41 0.50 0.46 0.42 0.44

BIO
BIO_Dmela 0.80 0.84 0.82 0.83 0.83 0.48 0.55 0.49 0.49 0.48
BIO_Yeast_Protein 0.49 0.71 0.55 0.57 0.56 0.34 0.47 0.38 0.37 0.37

CA
CA_GrQc 0.75 0.81 0.74 0.76 0.74 0.43 0.51 0.43 0.42 0.42
CA_HepTh 0.69 0.78 0.71 0.70 0.72 0.40 0.45 0.38 0.40 0.41
CA_Erdos992 0.69 0.72 0.70 0.69 0.71 0.44 0.49 0.42 0.43 0.43

INF
INF_OpenFlights 0.87 0.89 0.88 0.87 0.87 0.51 0.57 0.51 0.52 0.51
INF_Power 0.49 0.77 0.36 0.42 0.38 0.29 0.46 0.26 0.25 0.27

P2P
P2P_Gnutella08 0.73 0.79 0.72 0.75 0.73 0.40 0.51 0.43 0.45 0.43
P2P_Gnutella09 0.71 0.78 0.73 0.72 0.73 0.39 0.50 0.42 0.45 0.43
P2P_Gnutella25 0.69 0.81 0.71 0.73 0.74 0.39 0.47 0.41 0.40 0.41

SOC
SOC_Hamster 0.84 0.86 0.85 0.85 0.85 0.50 0.54 0.52 0.52 0.50
SOC_Wiki_Vote 0.76 0.82 0.75 0.77 0.77 0.43 0.51 0.45 0.45 0.47
SOC_Advogato 0.88 0.91 0.89 0.88 0.89 0.52 0.61 0.52 0.50 0.51

TECH
TECH_Ppg 0.81 0.86 0.81 0.81 0.82 0.47 0.53 0.49 0.50 0.51
TECH_Router_rf 0.83 0.86 0.83 0.83 0.83 0.49 0.55 0.51 0.48 0.48
TECH_Whois 0.89 0.91 0.89 0.89 0.89 0.52 0.65 0.57 0.59 0.59

WEB
WEB_Spam 0.87 0.90 0.88 0.87 0.87 0.51 0.56 0.51 0.52 0.52
WEB_Webbase 0.61 0.75 0.60 0.59 0.60 0.38 0.45 0.42 0.43 0.44

Table 4.1: Improvement in Core Resilience of the top 50% nodes (by core number) on adding 5% new
nodes by MRKC, random (RANDOM), highest mean degree (DEGREE) and highest mean core number
(CORE) of the endpoints. It can be observed that MRKC outperforms all the baselines.

33

4.4.3 Experiments

To evaluate MRKC, we added up to 5% new edges to real-world networks to improve their core

resilience.

The networks we used for our experiments are given in Table A.1. Adding edges to improve core

resilience is applicable to only some type of networks. For example, in social networks, we cannot

force people to form connections. However, we included these kind of networks in our experiments

for the sake of completeness.

For comparison, we consider three baselinemethodswhere the edges inE ′ are added (1) randomly

(RANDOM), (2) in decreasing order of the sum of the degrees of the endpoints (DEGREE), and (3) in

decreasing order of the sum of the core numbers of the endpoints (CORE). We run each experiment

10 times, and present themean values. In Figure 4.4, we show the comparison of the core resilience

of di�erent networks with edges added by MRKC and the three baselines. The y -axis is the core

resilience, and the x -axis is the percentage of edges added. Because of space limitations, we cannot

present the plots for all the networks, and so we give them in Table 4.1 when 5% new edges are

added.

We observe that MRKC outperforms all considered baselinemethods. In cases where the initial core

resilience is low, MRKC can improve it by a large amount (for example in INF_Power, BIO_Yeast).

However, if a network already has high core resilience to begin with, MRKC cannot improve it by

much (as in INF_OpenFlights, TECH_Whois).

In the case of AS networks, the core resilience (with respect to both edge deletion and node dele-

tion) is low, and a�er adding the edges by MRKC, the core resilience is increased significantly - up

to 17.9% and 25.7% for edge deletion and node deletion respectively. However, for the TECH net-

works, the core resilience against edge deletion is already high. So on adding edges by MRKC, we

could achieve an improvement of only 3.4%.

34

0.60

0.65

0.70

0 1 2 3 4 5

Edges added (%)

C
o
re

R
es
il
in
ce

(a) AS_733_1999 (Edge Deletion)

0.35

0.40

0.45

0.50

0 1 2 3 4 5

Edges added (%)

C
o
re

R
es
il
in
ce

(b) AS_733_1999 (Node Deletion)

0.870

0.875

0.880

0.885

0.890

0.895

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(c) INF_OpenFlights (Edge Deletion)

0.50

0.52

0.54

0.56

0.58

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(d) INF_OpenFlights (Node Deletion)

0.83

0.84

0.85

0.86

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(e) TECH_Router (Edge Deletion)

0.50

0.55

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(f) TECH_Router (Node Deletion)

0.880

0.885

0.890

0.895

0.900

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(g) WEB_Spam (Edge Deletion)

0.52

0.54

0.56

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(h) WEB_Spam (Node Deletion)

Figure 4.4: Change in Core Resilience against percentage of new edges added for di�erent real-world
networks. The y -axis is the core resilience and the x -axis is the percentage of new nodes added by the
di�erent algorithms. The figures in the le� column (Figures 4.4a, 4.4c, 4.4e, 4.4g) are for edge deletion,
and those in the right column (Figure 4.4b, 4.4d, 4.4f, 4.4h) are for node deletion. In all cases, MRKC
outperforms the baselines.

35

200

400

600

1 2 3 4 5

Edges Added (%)

T
im

e
(s
ec
on

d
s)

Figure 4.5: Running time of ourmethod for improving core resilience (MRKC) on di�erent networks. The
x -axis is the amount of new edges added (in%), and the y -axis is the time taken to add the edges (in
seconds).

In the plots shown in Figure 4.4, we observe that the rate of improvement of MRKC in the case of

node deletion is lower than that for edge deletion in the same network. This is because the core

resilience due to edge deletion cannot be less than that of node deletion (Equation A.1).

RunningTime: In Figure4.5,weshowthe time taken toadd thenewedgesaccording toourmethod

for four networks. The x -axis is the amount of new edges added (in%), and the y -axis is the time

taken to add the edges. The values are the means over 10 runs.

MRKC checks for all edges that can be added without changing core number in the first step. This is

whyweobserve in Figure 4.5 that the plots donot start at the samepoints. A�er the initial candidate

edges generation,weno longer need to checkall the edges - if anedge (u, v) is added,weonlyneed

to check the purecore of u and v , so the following edge insertions are faster. The only exception is

the AS_1999 network, where the runtime increases constantly. This is because there are a large

number of nodes with large purecores, so subsequent checks still take a significant amount of time

for this network.

36

4.5 Conclusion

In this chapter,wediscussed theproblemof capturinghowthek-core structureof anetworkchanges

due to deleted edges or nodes. To address this we proposed a measure called Core Resilience of a

network, which measures how much the ordering of the nodes by core number is a�ected when

there are missing edges and nodes.

Computing the core resilience of a large networks is computationally expensive, and so we pro-

posed two nodemeasures based on network structure. The twomeasures - Core Strength and Core

Influence, can be used together to tell us if a network is likely to have high core resilience or not. We

proposed a method called Maximize Resilience of k-core (MRKC) to add edges to a network with-

out changing the core number of any node, such that the core resilience of the resulting network

is improved. We tested our method against baselines on multiple real-world networks, and found

that it can improve the core resilience against edge deletion by 19% on average, and against node

deletion by 19.7% over the original network.

37

Chapter 5

Core Minimization

In Chapter 4, we considered the change to the ordering of nodes based on core number due to

missing edges or nodes. In some applications, themembership of the nodes in some k-core ismore

important than the global ordering of nodes. The literature describes the Core Minimization prob-

lem, which asks how likely it is that nodes in the true k-core of a graph are to be in the observed

k-core of that graph if there is missing data. [68, 99, 104].

As an example consider the toy graph shown in Figure 5.1. Here all the nodes belong to the 3-core;

but if the red node (or rather, any node) is deleted, they are no longer in the 3-core.

There has been various recent works on the problem of core minimization. Zhang e al. [99] pro-

3-Core

Figure 5.1: A toy graph showing collapsed k -core. The entire graph is a 3-core; but if the red node is
deleted, all the rest of the nodes are no longer in the 3-core.

38

posed a method of finding ‘critical users’ – that is the nodes that when deleted reduces the size of

the k-core themost. They proposed a greedy algorithm to find such critical users. Medya et al. [68]

showed that solving the core minimization problem is NP-hard.

In contrast to these earlier works, our goal is not to find the set of nodes that minimizes the k-core

by themost – but rather to characterize the resilience of the k-core of a graph to suchminimization

attacks. In this chapter, we try to answer the following questions:

1. How can we characterize the resilience of a k-core to core minimization?

2. If we can anchor some nodes, which nodes shouldwe select to improve the resilience to core

minimization?

Another very closely related problem is the Anchored k -Core problem [14]. In the anchored k-core

problem, one seeks to find a set of nodes to ‘anchor,’ or retain within the anchored k-core, even if

their degreewithin thek-core subgraph is less thank : othernodes in theanchoredk-coremust thus

have at least k connections either to other nodes in the subgraph or to the anchors. The objective

of the anchored k-core problem is to maximize the size of the resulting anchored k-core [15], in

hopes of preventing a cascading exodus. We will describe this in Chapter 6.

5.1 Motivating Application

Because the k-core of a graph gives us the ‘central’ nodes in the graph, there are various applica-

tions that depends on the membership of the nodes in the k-core. Here, we describe a few exam-

ples.

Example 1: k-core in theWWWhas been used to identify web-spam. In [57], the authors found that

the spam nodes are grouped together with other spam nodes in a connected component of the

k-core. They proposed a method to identify the spam nodes using this information.

39

If the resilienceof thek-core tocoreminimization is low, the spamnodescandelete somenodes/edges

tobetter hide theother spamnodes. So, it is important tounderstand the resilienceofk-core to core

minimization.

Example 2: A financial network is one where the nodes are publicly traded companies and they

are connected by an edge if the similarity in their trading pattern determines if two nodes are con-

nected [65]. In [22], the authors studied the robustness of such financial networks. They found that

the size of the k-core (for a high value of k) is a good indicator of the robustness of the financial

system. They found that if the distribution of the nodes in the di�erent k-shells follows a U-shape –

more nodes in very high and very low k-shells and very few nodes in the intermediate, the financial

network is more robust against external shocks.

An attacker (with enough capability) can manipulate edges in such network by manipulating the

trading behavior of some companies. If the goal of the attacker is to reduce the robustness of the

system they canmanipulate the edges with the object of minimizing the size of the k-core (for high

k) so that most of the nodes falls to intermediate shells. So, it is important to understand not only

how robust the financial system is to external shocks, but also the core minimization attacks. If the

resilience to core minimization attack is low, it is also important to identify which are the compa-

nies that needs to be kept alive (i.e. anchored) so that as to improve the resilience to such core

minimization attacks.

5.2 Characterizing the Resilience to Collapsed k-Core

In the case of core resilience (Chapter 4), we are interested in measuring how resilient multiple k-

cores are. So, the ordering between the di�erent cores matters – which led to us defining it based

on rank correlation. In this casewe are interested in just a single k-core –wedonot care if the nodes

changes coreness as long as they are still in the k-core. For example, if we are interested in the 5-

core, it does not matter if the coreness of a node changes from 10 to 9. All that we care is that the

40

node still remains in the 5-core.

Although the literature on collapse k-core generally talks about node deletion, we will also focus

on edge deletion in this chapter as that simplifies the analysis. As described in Appendix A.1, node

deletion can be considered as another side of edge deletion.

LetGk = 〈Vk ,Ek〉, be the k-core of a graph and letG be the set of graphs a�er removing p% of the

nodes. We define the Collapse Resilience of the k-core ofG as,

R(Gk) =

∑
G ′∈G |{v ∈ Vk : κG ′(v) ≥ k}|

|G| · |Vk |
. (5.1)

That is, the collapse resilience of the k -core is the expected fraction of nodes that remains in the k -

core over all the possible subgraphs that results due to p% of edge removal. If we are interested in

the average fraction of collapsed nodes, 1−R(Gk) give us that value.

In practice, it is not possible to findG. So we approximate it through sampling. However even the

sampling method might not be computationally e�icient enough for some cases, so we propose

the concept of Core Instability.

5.2.1 Core Instability

Motivated by the idea of core strength (Section 4.3.2), we propose the the idea of Core Instability of

the k-core which is a measure of what fraction of nodes in the k-core are likely to drop out of the

k-core due to an edge deletion. We expect k-cores with high core instablity to collapsemore easily.

We begin by measuring how many neighbors of a node u in G needs to drop out of the k-core for

u to also drop out. We call this the Relative Core Strength of u with respect to the k-core, and it is

41

1

22

111

2

3 3

Figure 5.2: An example of a core unstable subgraph. The number inside the nodes are the relative core
strength of the nodes. Notice that if any edge that has a node with relative core strength of 1 as one
endpoint is deleted, the entire structure collapses, and none of the nodes in the subgraph are in the
k -core.

given by,

rCS(u,G , k) = |{v ∈ ΓG(u) : κG(v) ≥ k}| − k + 1. (5.2)

Then, we define a Core Unstable Subgraph in the k-core as themaximal connected subgraph of the

k-core such that:

1. All nodes in the subgraph with relative core strength of 1 are connected.

2. All nodes in the subgraphwith relative core strength greater than 1 are connected to asmany

nodes with lower relative core strength as its relative core strength.

The idea behind the core unstable subgraph is that, if any edge that has a node with relative core

strength of 1 loses an edge, the entire subgraph drops core number (Theorem 5.2). As an example,

consider Figure 5.2. Here the numbers inside the nodes are their relative core strengths. We can

observe that if any edge that has a node with relative core strength of 1 as one endpoint is deleted,

the entire subgraph collapsed out of the k-core. So, the idea of the core unstable subgraph allows

us to quantify how close the k-core as a whole is to collapse.

Let Gk = 〈Vk ,Ek〉, be the k-core, and let G ′ = 〈V ′,E ′〉 be a core unstable subgraph. Assume

r(G ′) be the number of edges that has one a node of relative core strength of 1 as one endpoint.

42

That is,

r(G ′) = |{(u, v) ∈ Ek : u ∈ V ′ ∧ rCS(u,G , k) = 1}|. (5.3)

If we are dealing with one edge deletion, then the probability of deleting one of these edges is r(G
′)

|Ek |
.

If an edge is deleted, the fraction of nodes (out of all nodes in the k-core) that drops out of the k-

core is |V
′|

|Vk |
. So, we can define the core instability of a k-core, as the expected fraction of nodes that

drops out of the k-core due to an edge deletion. Formally the core instability of the k-core of the

graphG is given by,

CT (G , k) =
∑
G ′∈U

r(G ′)

|Ek |
· |V

′|
|Vk |

, (5.4)

where U is the set of all core unstable subgraphs in the k-core.

Finding all the core unstable subgraphs in the k-core is straight forward – simply start with all con-

nected components of nodes with relative core strength 1; then incrementally add nodes of higher

relative core strength that satisfies the conditions. Algorithm 3 describes this process in more de-

tails.

Algorithm 3 The algorithm to find the core unstable subgraph.
1: function FINDCOREUNSTABLE(Gk)
2: r ←RelativeCoreStrength(Gk)
3: C ← Connected components in the subgraph induced by {u ∈ V ′ : r [u] = 1}
4: rmax ← max

u∈Vk
r [u]

5: for S ∈ C do
6: for k ∈ [2, 3, ... , rmax] do
7: T ← {u ∈ ΓGk (S) : r [u] = k ∧ |ΓGk (u) ∩ S | ≥ k}
8: Update S withT
9: end for
10: end for
11: returnC
12: end function

Theorem5.1 (Complexity of Algorithm3). The running timeof Algorithm3 isO(|Vk |), and the space

43

complexity isO(|E |).

Proof. If we group together nodes by their their relative core strength, at each step, we only need to

check for nodes from within a group. So, over the entire process of building up one core unstable

subgraph, we would have checked each group once. The running time of the algorithm is then,

O(|C ||Vk |). Since |C | � |Vk |, we can write it asO(|Vk |).

At the most, the space required to store C is approximately equal to that of V . So, the space com-

plexity of Algorithm 3 isO(|Vk |).

Theorem 5.2. ForG ′ ∈ U , if an edge (u, ∗), such that rCS(u,G , k) = 1, is deleted fromG ′, all the

nodes inG ′ drops out of the k -core.

Proof. By construction we can see that all the nodes with relative core strength of 1will drop out of

the k-core.

As a result, the nodes with relative core strength of 2will also drop out of the k-core.

Through the same argument, all the nodes in the core unstable graph will drop out of the k-core.

5.2.2 Experiments

To test if the size of collapse in the k-core with higher core instability is larger than those with lower

instability, we perform experiments on real-world networks. We consider three cases: (1) random

edge deletion, (2) random node deletion, and (3) greedy node deletion [99].

In the randomedgedeletion, anedge that connects twonode in thek-core is randomlydeleted. The

randomnode deletion is similar exceptwe delete nodes. In the greedy node deletion, the node that

minimizes the size of the k-core the most if deleted is deleted at each step. In all these cases a�er

each deletion the nodes that are in the k-core is updated. For greedy node deletion, we consider

44

1e-05

1e-04

1e-03

1e-06 1e-05 1e-04

Core Instability

F
ra
ct
io
n
C
o
ll
ap

se
d

(a) Random Edge Deletion

1e-03

1e-02

1e-06 1e-05 1e-04

Core Instability

F
ra
ct
io
n
C
o
ll
ap

se
d

(b) Random Node Deletion

0.10

1.00

1e-03 1e-02

Core Instability

F
ra
ct
io
n
C
o
ll
ap

se
d

(c) Greedy Node Deletion

Figure 5.3: Fraction of nodes that collapsed due to randomedge (fig. 5.3a), randomnode (Figure 5.3b)
and greedy node [99] (Figure 5.3c) against the Core Instability for various real-world graphs (denoted
by thedots). Here, thenumberof nodesor edgesdeleted is20 (5 for greedynodedeletion), andwecon-
sider the 10-core. We can observe that in networks with higher core instability, the collapse is higher.

only small graphs because the algorithm scales very poorly with the number of nodes.

Figure 5.3 shows the fraction of nodes that drops out of the 10-core against the core instability

due to random edge deletion (Figure 5.3a), random node deletion (Figure 5.3b), and greedy node

deletion (Figure 5.3c). In these figures, the dots represents di�erent networks from various domains

ranging from social networks to biological networks. The number of edges/nodes deleted for the

random case is 20 and it is 5 for the greedy algorithm (because greedy algorithm is very slow). We

consider the 10-core in all the cases. Because the greedy algorithm scales very poorly with the

network size, we consider only small networks for Figure 5.3c. The values of fraction collapsed given

are the average values of 30 trials.

We can see that in networks with higher core instability, a larger fraction of nodes drops out of the

k-core in all the cases. This indicates that the core instability gives us a measure of the collapse

resilience of a graph – graphs with higher core instability have lower collapse resilience.

45

5.3 Anchoring Nodes to Minimize Collapse

In this sectionwe discuss ways tominimize the collapse of the k-core due to node or edge deletion.

Todo thiswe refer to the ideaof ‘anchored k-core’ [14]. The anchored k-core of a graphG = 〈V ,E 〉,

is defined as the subgraph such that all the nodes in the subgraph have at least k neighbors within

the subgraph or a set A ⊆ V . The set of nodes A is called the set of ‘anchor’ nodes. Through

appropriate selection of these anchor nodes, we seek to minimize the collapse.

As an example, in the context of a social network, we can think of the anchor nodes as those users

who are given incentives to remain in the network. Of course, we are limited with the number of

anchor nodes we can select – we will call this the anchor budget. This is related to the anchored

k -core problem [98, 54], and we will discuss this in the next chapter.

Let κ̂(u,G ,A) be the core number of node u in graph G anchored with set of nodes A ⊆ Vk .

Then, the collapse resilience in the presence of the anchors A is given by simply replacing κ(∗) in

Equation (5.1) to κ̂(∗). That is,

R̂(Gk ,A) =

∑
G ′∈G |{v ∈ Vk : κ̂(v ,G ′,A) ≥ k}|

|G| · |Vk |
. (5.5)

If b is the number of anchors allowed, the goal is to findA∗ such that,

A∗ = arg max
A⊂[Vk]b

R̂(Gk ,A). (5.6)

5.3.1 Shortcoming of Naive Method

If wehave amethodof selecting nodes to remove tominimize the size of the k-core, a naivemethod

of selecting anchor nodes might to be simply anchor the solutions from the method – preventing

them from deletion or dropping out of the k-core. However, as we will show that does not always

46

A

C

B

D

Figure 5.4: Toy example demonstrating the shortcomings of the naive method of anchor selection in
increasing the collapse resilience. In the naivemethod, either nodeA orB will be selected as anchors.
However, we can see that even a�er anchoring node A or B , any edge deletion collapses the entire
3-core.

give good anchor nodes.

The k-core minimization technique we will use here is the greedy algorithm CKC proposed in [99].

Basically, the idea is to greedily select the node whose deletion results in the largest decrease in

the size of the k-core. In the naive adaptation of this method, instead of deletion, these nodes are

anchored.

Consider the graph shown in Figure 5.4, where all the nodes are in the 3-core. Suppose that we are

dealing with one node deletion, and one anchor selection. The naive method will select nodeA or

B because deletion of either of these nodes results in the largest number of nodes dropping out of

the 3-core (and they have the highest degree). Suppose that node A is anchored. In that case the

greedynodedeletion algorithmwill delete nodeB – resulting in the entire3-core collapsing (except

the anchor node). If we anchored nodeC orD , only half of the nodes in the 3-core will collapse.

This example demonstrates that the naive method of anchor selection does not work because all

that the naive method does is to remove one solution from the CKC algorithm.

5.3.2 Maximizing the Collapse Resilience of the k-Core

The idea of core unstable subgraphsmotivates our algorithm for anchor selection. The core unsta-

ble subgraph is defined as the maximal connected subgraph of the k-core such that all the nodes

47

in the subgraph with relative core strength of 1 are connected, and all the nodes other nodes in

the subgraph are connected to as many nodes wit lower relative core strength as its relative core

number 5.2.1.

We know that in a core unstable subgraph if an edge with one endpoint at a node with relative core

strength of 1 is deleted, the entire subgraph drops out of the k-core (Theorem 5.2). By definition

the anchor nodes cannot drop out of the k-core. So, the anchor nodes should not be considered

as part of the core unstable subgraph. Thus, in the presence of anchor nodes, we redefine the core

unstable graphs to exclude the anchor nodes. As a consequence, edges adjacent to an anchor node

can also not be candidates for removal. That is Equation (5.3) has to be updated as,

r̃(G ′) = |{(u, v) ∈ Ek : u ∈ V ′ \ A ∧ v 6∈ A ∧ rCS(u,G , k) = 1}|. (5.7)

So, given a core unstable subgraph, G ′, the anchor nodes can serves two functions: (1) minimize

|V ′|, the size of the core unstable subgarph, and/or (2) minimize r(G ′), the number of edges with

an endpoint a node in V ′ with relative core strength of 1. This is the intuition behind our anchor

selection algorithm, which we call Core Instability Minimization (CIM).

Consider a core unstable subgraphG ′ = 〈V ′,E ′〉 of the k-coreGk , and let r(G ′) be the number of

edges with an endpoint in a node in V ′ with relative core strength of 1. If a node u is anchored, let

δ(u,G ′,A) be the relative size of the resulting core unstable subgraph. That is,

δ(u,G ′) =

|V ′|
|Vk |

if u 6∈ V ′

|{v∈V ′:rCS(v ,G ′)≤|N(v ,G ′)\{u}|}|
|Vk |−1

otherwise
. (5.8)

Let γ(u,G ′) be the relative number edges whose deletion leads to the collapse of G ′ (excluding

48

the ones with endpoint at u). Then,

γ(u,G ′) =
|{(x , y) ∈ Ek : x ∈ V ′ \ {u} ∧ rCS(x ,G ′) = 1 ∧ y 6∈ A ∪ {u}}|

|{(x , y) ∈ Ek : x , y 6∈ A ∪ {u}}|
, (5.9)

whereA is the set of anchor nodes already selected.

Then, for each node u ∈ V , the drop in core instability due to u is then given by,

∑
G ′∈U

(
r(G ′)|V ′|
|Ek ||Vk |

− γ(u,G ′)δ(u,G ′)

)
. (5.10)

If we set,

α(u) =
∑
G ′∈U

γ(u,G ′) · δ(u,G ′), (5.11)

at each step we select the node with the lowest α(∗) and anchor it. The process is repeated until

the required number of anchors are selected. Algorithm 4 gives the CIM algorithm in more details.

Note that FindCoreUnstableAnchored() is similar to Algorithm 4, except that we take into con-

sideration anchor nodes.

Theorem 5.3 (Complexity of Algorithm 4). The time complexity of Algorithm 4 isO(b|Vk |); and the

space complexity isO(|Vk ||).

Proof. Finding the core unstable subgraphs can be done in O(|Vk |). For each core unstable sub-

graph, we need to update the scores for at most |Vk | nodes. So, to find one anchor, the running

time is O(|Vk | + |U||Vk |) ≈ O(|Vk |), since |U| � |Vk |. So, the running time of CIM to find b

anchors isO(b|Vk |).

The space required during FindCoreUnstableAnchored is O(|Vk |). No additional space is re-

quired during the other steps. So, the space complexity isO(|Vk ||).

Example: To demonstrate CIM with a working example, let us consider the toy example we con-

49

Algorithm 4 The algorithm for Core Instability Maximization (CIM).
1: function CIM(Gk)
2: A← ∅
3: while |A| < b do
4: α : V _ 0
5: U ← FindCoreUnstableAnchored(Gk ,A)
6: forG ′ ∈ U do
7: for u ∈ V ′ do
8: α(u)← α(u) + γ(u,G ′) · δ(u,G ′)
9: end for
10: for u ∈ ΓGk (V

′) \ V ′ do
11: α(u)← α(u) + γ(u,G ′) · |V ′|
12: end for
13: end for
14: u ← arg min

v∈Vk
α(u)

15: A← A ∪ {u}
16: end while
17: returnA
18: end function

1

63

2 5

4

9

8

7

181512

171411

161310

Figure 5.5: Toy example demonstrating the shortcomings of the naive method of anchor selection in
increasing the collapse resilience.

sidered in Section 5.3.1 shown in Figure 5.5 again. We are considering only one anchor and node

deletion in this example. As demonstrated earlier, removal of node 5 results in the entire 3-core

collapsing.

In this example, the entire graph is one core unstable subgraph. So, the core instability 1 – that is,

whatever edge we delete, the entire 3-core will collapse.

The α(∗) for all the nodes are given in Table 5.1. We can see that nodes 7 and 10 have the lowest

α(∗) scores. If either of them are selected as anchor, the expected fractions of nodes that collapse

50

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18
α(∗) 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 5.1: Values of α(∗) for the toy example.

is reduced from 1 to 0.49. This is clearly much better than the naive method.

5.3.3 Experiments

To evaluate the e�ectiveness of CIM, we perform experiments on multiple real-world graphs. We

consider random edge removal, random node removal and greedy node removal. Because the

greedy node removal is slow for larger graphs, we consider only small graphs.

We perform two types of experiments: (1) performance comparison of CIM for di�erent numbers of

anchor nodes, and (2) performance comparison between CIM and baseline algorithms.

Experiment 1: For the first experiment, we use only CIM as the anchor selection algorithm. We vary

the number of anchors from 0 to 25 in steps of 5. For all the experiments we consider only the

10-core. The datasets we use are bio-dmela, bio-celegans and unf-usair, and these datasets are all

publicly available. We selected these datasets because the greedy node removal algorithm is slow

on larger graphs.

Figure 5.6 shows the fraction of collapsed nodes against the number of removed edges/nodes for

various number of anchor nodes.We can see that in all the cases, increasing the number of anchors

reduces the fraction of collapsed nodes. In the cases of bio-celegans and inf-usair graphs, adding

25 anchors reduces the collapsed nodes by more than half. Note that the anchored nodes are not

counted in calculating the fraction of collapsed nodes (either as not collapsed or as being in the

k-core).

The results for thegreedynode removal in thecaseofbio-dmelaandbio-celegans is very interesting.

We canobserve thatwith just5nodes removal, the entire10-core collapses. However, by anchoring

51

0.2

0.4

0.6

0.8

2 4 6 8 10

Edges Removed (%)

F
ra
ct
io
n
C
o
ll
a
p
se
d

(a) Random Edge (bio-demla)

0.2

0.4

0.6

0.8

2 4 6 8 10

Nodes Removed (%)

F
ra
ct
io
n
C
o
ll
a
p
se
d

(b) Random Node (bio-dmela)

0.00

0.25

0.50

0.75

1.00

5 10 15 20

Nodes Removed

F
ra
ct
io
n
C
o
ll
a
p
se
d

(c) Greedy Node (bio-dmela)

0.1

0.2

0.3

2 4 6 8 10

Edges Removed (%)

F
ra
ct
io
n
C
o
ll
ap

se
d

(d) Random Edge (bio-celegans)

0.1

0.2

2 4 6 8 10

Nodes Removed (%)

F
ra
ct
io
n
C
o
ll
ap

se
d

(e) Random Node (bio-celegans)

0.00

0.25

0.50

0.75

1.00

5 10 15 20

Nodes Removed

F
ra
ct
io
n
C
o
ll
ap

se
d

(f) Greedy Node (bio-celegans)

0.000

0.005

0.010

0.015

0.020

0.025

2 4 6 8 10

Edge Removed (%)

F
ra
ct
io
n
C
ol
la
p
se
d

(g) Random Edge (inf-usair)

0.000

0.005

0.010

0.015

0.020

0.025

2 4 6 8 10

Nodes Removed (%)

F
ra
ct
io
n
C
ol
la
p
se
d

(h) Random Node (inf-usair)

0.00

0.25

0.50

0.75

1.00

5 10 15 20

Nodes Removed

F
ra
ct
io
n
C
ol
la
p
se
d

(i) Greedy Node (inf-usair)

Figure 5.6: Fraction of nodes that collapsed from the 10-core against the edges/nodes removed for
di�erent number of anchors selected through CIM. The di�erent lines represents di�erent amount of
anchor nodes. It can be observed that in all the cases, selectingmore anchors results is lower fraction
of collapsed nodes.

52

nodes selected by CIM the number of nodes whose removal required for the collapse increases to

15 and 20 respectively.

Experiment 2: For the second experiment, we compare CIM against other baselines in reducing

the collapse. We consider three baseline algorithms: Random (anchors selected randomly from

Vk), Degree (nodes in Vk with highest degree selected as anchors), and Naive (described in Sec-

tion 5.3.1). We consider 25 anchor nodes for this experiment, and consider the same three types of

collapse as before: random edge deletion, random node deletion and greedy node deletion.

Figure 5.7 shows the comparison of CIM against various baseline algorithms. In all the cases, CIM

results in smaller collapse against all three – random edge deletion, random node deletion and

greedy node deletion.

Among the baselines, the performance of the di�erent algorithms varies wildly. In bio-dmela, ran-

dom performs better than the other baselines for the random deletions – but degree outperforms

it in the greedy node removal. Generally greedy seems to work reasonably well among the base-

lines. Of particular interest is the performance of the naive anchor selection based on the greedy

algorithm. In most of the cases, it performs the worst.

These results (Experiments 1 & 2) show the e�ectiveness of CIM in preventing/minimizing the col-

lapse of the k-core.

5.4 Conclusion

In this chapter we discussed the resilience of a single k-core to collapse – that is if we are interested

not in the global k-core structure, but only care about howmany nodes in the k-core remain when

there is missing data. To this end, we proposed a measure called Core Instability that can tells us

how likely a cascading collapse is likely to happen in a graph.We thenuse showexperimentally that

this measures works in real-world graphs.

53

0.2

0.4

0.6

0.8

2 4 6 8 10

Edge Removed (%)

F
ra
ct
io
n
C
o
ll
ap

se
d

(a) Random Edge (bio-demla)

0.2

0.4

0.6

0.8

2 4 6 8 10

Nodes Removed (%)

F
ra
ct
io
n
C
o
ll
ap

se
d

(b) Random Node (bio-dmela)

0.00

0.25

0.50

0.75

1.00

5 10 15 20

Nodes Removed

F
ra
ct
io
n
C
o
ll
ap

se
d

(c) Greedy Node (bio-dmela)

0.1

0.2

2 4 6 8 10

Edges Removed (%)

F
ra
ct
io
n
C
o
ll
ap

se
d

(d) Random Edge (bio-celegans)

0.05

0.10

0.15

0.20

0.25

2 4 6 8 10

Nodes Removed (%)

F
ra
ct
io
n
C
o
ll
ap

se
d

(e) Random Node (bio-celegans)

0.00

0.25

0.50

0.75

1.00

5 10 15 20

Nodes Removed

F
ra
ct
io
n
C
o
ll
ap

se
d

(f) Greedy Node (bio-celegans)

0.0025

0.0050

0.0075

0.0100

2 4 6 8 10

Edges Removed (%)

F
ra
ct
io
n
C
ol
la
p
se
d

(g) Random Edge (inf-usair)

0.0025

0.0050

0.0075

0.0100

0.0125

2 4 6 8 10

Nodes Removed (%)

F
ra
ct
io
n
C
ol
la
p
se
d

(h) Random Node (inf-usair)

0.00

0.02

0.04

5 10 15 20

Nodes Removed

F
ra
ct
io
n
C
ol
la
p
se
d

(i) Greedy Node (inf-usair)

Figure 5.7: Fraction of nodes that collapsed from the 10-core against the edges/nodes removed for
di�erent anchor selection algorithms. The di�erent lines represents di�erent anchor selection algo-
rithms. It can be observed that in all the cases, CIM outperforms all the other algorithms. In bio-
celegans network, anchors selected based on Degree performs as well as CIM. In all these experi-
ments the number of anchors is 25.

54

Motivated by this measure, we then consider the problem of anchoring nodes to minimize that

cascading collapse – both to randomly missing data and more targeted attacks. We propose an

algorithm called Core Instability Maximization to select the anchors, and we show that it minimizes

the collapse in real-world graphs.

In the next chapter, we consider a related problem called the anchored k-core problem. If we want

to maximize the size of the anchored k-core by anchoring a fixed number of nodes, which ones

should we select?

55

Chapter 6

Graph Unraveling

In Chapter 5, wediscussed the resilience of a k-core to cascading collapse.Wepresented ameasure

to quantify howclose a graph is to such collapse andproposed amethodof selecting anchor nodes

to minimize the cascade. In this chapter, we consider the anchored k -core problem [14, 15].

The participation of a person in social networking platforms is o�enmotivated by the participation

of others [60]. People take part in such platforms in order to engage with others; and in return, they

produce content that appeals to others. In other words, people’s incentives for participation on a

platformdependpartially on the number of people towhom they can reach.When these incentives

are low, peoplemay leave the platform. This decreasedparticipationmay a�ect the participation of

others, further decreasing the incentives for participation. Considering the social-networking plat-

form as a complex network among people, locally decreased participation may cause a cascading

exodus from the platform. Finding (and incentivizing) the critical individuals whose active partici-

pation are key to the larger participation in the network is an essential problem.

As an example consider the example graph shown in Figure 6.1. Here the green nodes have a core

number of 3, the blue ones have a core number of 2 and the red node has a core number of 1.

Suppose a user stay on the platform if at least 3 friends are also on the platform. Then, the red

node will leave as it has only one friend – this in turn causes the number of friends of the blue node

to drop to 2 and they will also leave. At the end only the green nodes will remain active on the

56

Figure 6.1: An anchored k -core example. The green nodes form a 3-core. If the red node is anchored,
the entire graph becomes an anchored 3-core.

network. This cascading exodus of nodes/users was first described by [14] as the graph unraveling

problem. We present more motivating applications inSection 6.1.

One way to prevent this graph unraveling is to anchor some nodes – that is give some incentives to

some nodes to remain active on the platform. These nodes are referred as the anchored nodes. In

the anchored k-core problem [14], one seeks to find a set of nodes to ‘anchor,’ or retain within the

anchored k-core, even if their degree within the k-core subgraph is less than k : other nodes in the

anchored k-core must thus have at least k connections either to other nodes in the subgraph or to

the anchors. The objective of the anchored k-core problem is to maximize the size of the resulting

anchoredk -core [15], in hopes of preventing a cascading exodus. In the literature, the nodes (exclud-

ing the anchors) that are in the anchored k-core but not in the original k-core are called followers.

Given a fixed number of anchors, finding the optimal sets of anchors to maximize the size of the

k-core is known to be NP-hard for k > 2 [14].

If we take a look at the example graph in Figure 6.1 again, we can see that if the rednode is anchored,

the rest of the nodes become a part of the anchored 3-core – thus preventing the graph unraveling.

The algorithmic challenge behind the anchored k-core problem lies in the ability to foresee cumu-

lative e�ect of groups of anchor nodes, not just individual nodes. It is possible that the addition of

the first few anchor nodesmake nodi�erence, but the addition of onemore anchormakes a drastic

di�erence. A good algorithm should be able to foresee the big future pay-o� even when the imme-

diate benefits are small. This ability to foresee future benefits becomes essential especially when

the budget for anchored nodes is large.

57

We propose Residual Core Maximization (RCM), a novel algorithm for the anchored k-core

problem. RCM selects anchors based on two measures – Anchor Score and Residual Degree. If the

number of anchors needed to convert a connected component is more than the anchor budget

available, the anchors are selected based on the anchor score. Otherwise, the anchor selection

depends on the residual degree, and RCM selects the candidate anchors with the highest anchor

scores.

6.1 Motivating Example

Example 1: Consider an online social friendship network (e.g., Facebook). It has been shown that

users remains on such networks the activity of their friends [60] – if they have enough friends active

on the social network, they are also likely to remain active. If we assume that a user remains active

if at least k friends are also active in the social network, the k-core forms the sub-graph of the users

who are active on the network. Therefore, it of interest to the owner to the operator of the social

network to maximize the size of the k-core in such network.

Example 2: In many online multiplayer games, users need to group up to attempt the high level

quests. If k is the number of people required to attempt these quests, the users who already have at

least k active friends have a better experience because they can invite these friends to these quests.

On, the other hand those who less than k active friends have to use the ‘looking for group’ feature

and are grouped with random people. That is the players who are in the k-core of the friendship

network have a better experience and are likely to stay active. Therefore, it is of interest tomaximize

the size of the k-core in this friendship network.

In these examples, the people/users/playerswho are provided an incentive to remain active are the

anchors, and the people who are in the anchored k-core as a result are the followers.

58

6.2 Anchored k-Core Problem

The anchored k -core problem was introduced by Bhawalkar et al. in 2012 [14]. The problem was

inspired by the observation that a user in a social network is motivated to stay only if her neighbor-

hoodmeets someminimal level of engagement: in k-core terms, shewill stay if k friends are also in

the network. Bhawalkar et al. defined the anchored k-core as the subgraph that is computed using

the usual k-core decomposition algorithm, but with the modification that selected ‘anchor’ nodes

are not deleted during the process. These anchored nodesmay represent, for example, nodes that

are recruited to remain active in the network, even if their friends are inactive. The anchored k-core

problem, then, is the problem of selecting a specified number b anchor nodes such that the num-

ber of nodes in the anchored k-core ismaximized. Bhawalkar et al. showed that for a general graph

the anchored k-core problem is solvable in polynomial time for k ≤ 2, but is NP-hard for k > 2 [15].

They also showed that the problem isW[2]-hard with respect to the number of anchors and Chitnis

et al. showed that the problem is W[1]-hard with respect to the number of nodes in the anchored

k-core [26].

Zhang et al. proposed a greedy algorithm, called OLAK, for the anchored k-core problem [98]. OLAK

operates over bmax iterations, where bmax is the allowable number of anchor nodes. In each iter-

ation, a node that is not in the anchored k-core but which would generate the largest number of

followers if anchored is selected as the next anchor. Because only a single anchor node at a time is

considered, and only nodes from the (k − 1)-shell can become followers when anchoring a single

node, OLAK considers only follower nodes from the anchored (k − 1)-shell during each iteration.

6.3 Problem Definition

Consider a graphG = 〈V ,E 〉, and letN(u) denote the set of neighbors of u ∈ V inG . We useGk

to refer to the subgraph induced byVk = V \ Vk .

59

Notation Description
A The set of nodes that are anchored.
b The anchor budget.
Vk,A The nodes in the anchored k-core with anchorsA.
Vk,A The nodes inV , but not inVk,A.
F (A) The nodes in the anchored k-core, but not in k-core.
N(u) The neighbors of node u in the graphG .
Ca The set of candidate anchors.
Cf The set of candidate followers.
δ (u,A) Residual degree of node u with anchorsA.

Table 6.1: Notations used in this chapter.

Consider A ⊂ Vk . The anchored k -core of G with anchors A is the maximal subgraph Gk,A =

〈Vk,A,Ek,A〉 such that ∀u ∈ Vk,A one of the following holds:

(1) u is an anchor node, i.e., u ∈ A,

(2) u has at least k neighbors inVk,A, i.e., |N(u) ∩ Vk,A| ≥ k .

The anchored k-core of a graph can be computed like the usual k-core – but with the nodes in

A kept in the graph even if their degree is below k . In many applications, there is a bound on the

number of anchor nodes. We denote this anchor budget by b. The ‘followers’ are the non-anchor

nodes that are not in the k-core but are in the anchored k-core, and are denoted by F (G , k ,A),

where

F (G , k ,A) = Vk,A \ (Vk ∪ A).

For brevity, we will useF (A)when theG and k are clear from the context.

The anchored k-core problem was introduced in [15] as follows: If we are given an anchor budget

of b, which nodes should be anchored so that the number of followers is maximized? Formally, the

60

objective is to find the setA∗ such that

A∗ = arg max
A⊆[Vk]

b

|F (k ,A) |

where
[
Vk
]b

=
{
X ⊆ Vk : |X | = b

}
.

6.4 Need for Look-Ahead Ability

Before the current work, the previous state-of-the-art algorithm for the anchored k-core problem is

OLAK, a purely greedy algorithm that, in each iteration, anchors the node that would add the most

followers [98]. This method has been demonstrated to work well on many real-world networks.

However, it su�ers from certain limitations. Zhang et al. showed that with such a selection proce-

dure, the considered followers can only come from the (anchored) (k − 1)-shell (that is, the nodes

in the (k − 1)-core, but not in the k-core). Most importantly, as we show in Section 6.5.1, the set

of all candidate followers is Cf ⊆ Vk,A. Combining these two results, the candidate followers in a

greedy method is,

C ′f =
(
Vk−1,A \ Vk−2,A

)
∩ Cf .

This means that there are two conditions for this type of purely greedy method to succeed:

1. If ratio fk =
|C ′f |
|Cf |

is large, thenmost of the followers comes from the (k − 1)-shell. The greedy

anchor selection algorithm will work well in this case.

2. Even if fk is low, if the anchor budget is low enough that the maximum number of follower

possible is close to or less than |C ′f |, purely greedy methods will work well.

The upper bound on the coreness of a node is its degree, and in most real-world networks the

degreedistribution followsapower-lawdistribution. So, the ratio fk decreases rapidly ask increases

61

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

k/kmax

f k

LB
SC

Figure 6.2: Relationbetween fk and k/kmax for di�erent networks. fk is the ratio of candidate followers
that are in the (k − 1)-shell to the total candidate followers. Note that the ratio decreases rapidly as
k increases, indicating that a greedy approach that focuses on (k − 1)-shells may not perform well.
Here, LB and SC are di�erent networks (described in Table ??).

Figure 6.3: In this example, we seek to maximize the size of the anchored 6-core. The red nodes are
the candidate anchors, the green nodes are in 4-shell and blue nodes are in 5-shell. The edges be-
tween the 6-core and the rest of the nodes are shown with dashed lines and the number represents
the number of edges.

in most real-world networks. As an example, Figure 6.2 shows the value of fk against k
kmax

for two

real-world networks – LB and SC. (These networks are described in more detail in Table ??.). The

value of fk drops very quickly – indicating that such algorithms will not be able to convert a huge

fraction of the potential follower into actual followers, for most values of k .

To demonstrate the shortcoming with an example, consider the example in Figure 6.3. In this ex-

ample, we seek to maximize the size of the anchored 6-core by anchoring 2 nodes. The red nodes

are the candidate anchors, the green nodes are in the 4-shell, and the blue nodes are in the 5-shell.

For visual clarity, the edges between the 6-core and the rest of the nodes are represented by dotted

lines, and the number represents the number of edges. It is clear that a greedy approach will select

62

nodes c and d as anchors, resulting in 2 new followers. However, had a and b been anchored, there

would have been 3 new followers.

6.5 Method: Residual Core Maximization

In this section we will describe the components that makes up Residual Core Maximization (RCM)

and how they combine together to select the anchor nodes.

6.5.1 Candidate Followers and Anchors

We begin by deriving the necessary conditions for a node to be a candidate follower from the defi-

nition of k-core, and then use that to find the candidate anchors.

Consider the adjacency matrixM of Gk,A, the subgraph of G le� a�er removing the anchored k-

core subgraph with anchors A. Assume that additional anchors A′ ⊆ Vk,A are introduced, where

Vk,A is the set of nodes in Gk,A. Let δ be an element-wise function over x such that γ (xv) = 1 if

xv ≥ 0 and 0 otherwise.

Let c, a, s be vectors of length |Vk,A| such that:

cv = |N(v) ∩ Vk,A|.

av =

k if v ∈ A′

0 otherwise
.

sv =

1 if v ∈ F (A ∪ A′) \ F (A)

0 otherwise
.

63

Then, by the definition of anchored k-core,

s = γ (Ms+ a+ c− k1) = γ (Ms+ a− r) . (6.1)

From equation 6.1, it is easy to see that for a node v /∈ A′, if |N(v)| < k , it is not possible to have

sv = 1. So, the candidate followers are given by,

Cf = {v ∈ Vk,A : |N(v)| ≥ k}.

Now consider a node v selected as an anchor. IfN(v) ∩ Cf = ∅, it is not possible for v to bring in

new followers. So the set of candidate anchors is,

Ca = {v ∈ Vk,A : |N(v) ∩ Cf | > 0}.

We can, therefore, discard any nodes not inCf ∪ Ca, from the following analysis.

Theorem 6.1. Nodes that are not inCf cannot become followers. That is, ∀v ∈
(
Vk,A \ Cf

)
,@A′ ⊆

Vk,A such that v ∈ F (k ,A ∪ A′).

Proof. Since, v /∈ Cf , |N(v)| < k . If v ∈ F (k ,A ∪ A′), by definition |N(v) ∩ Vk,A∪A′ | ≥ k =⇒

|N(v)| ≥ k . This is a contradiction. So, v /∈ F (k ,A ∪ A′).

Theorem6.2. Addingany subset ofVk,A\Ca to the set of anchorswill not change the set of followers.

That is, ∀A′ ⊆
(
Vk,A \ Ca

)
, F (k ,A) = F (k ,A ∪ A′).

Proof. ConsiderA′ ⊆
(
Vk,A \ Ca

)
. It is easy to show thatF (k ,A) ⊆ F (k ,A ∪ A′). So,

F (k ,A) \ F (k ,A ∪ A′) = ∅. (6.2)

64

Let D = F (k ,A ∪ A′) \ F (k ,A). By Theorem 6.1, D ⊆ Cf ⊆ Vk,A. Then by the definition of

anchored k-core, ∀v ∈ D ,

|N(v) ∩ Vk,A∪A′| ≥ k

|N(v) ∩ (Vk,A ∪ A′ ∪D)| ≥ k

|N(v) ∩ (Vk,A ∪D)|+ |N(v) ∩ A′| ≥ k .

BecauseA′ ∩Ca = ∅, @u ∈ A′ such that u ∈ N(v) (by definition ofCa). So, |N(v)∩A′| = 0. Then,

|N(v) ∩ (Vk,A ∪D)| ≥ k .

This means that Vk,A ∪ D is the set of nodes in the anchored k-core with anchors A, because by

definition, the anchored k-core is themaximal set. So all the nodes that are in the anchored k-core

with anchorsA ∪ A′ are already in the setVk,A. Then,D = ∅.

F (k ,A ∪ A′) \ F (k ,A) = D = ∅. (6.3)

Therefore, from (6.2) and (6.3), we getF (k ,A) = F (k ,A ∪ A′).

6.5.2 Residual Degree

In equation 6.1, for vf ∈ Cf , if there are rv additional neighbors in A′ ∪ F (A ∪ A′) due to the

anchors, vf will alsobecomeanew follower. Intuitively, rv tells us how ‘far’ v ∈ Cf is frombecoming

a follower – nodeswith lower value can be converted to new followersmore easily. In the rest of the

discussion we refer to this value as the Residual Degree and denote it with δ (v |A) = k − |N(v) ∩

Vk,A|.

65

6.5.3 Residual Core

When nodes A′ ⊆ Ca are added toA as anchors, which nodes in Cf become followers? To answer

this we define the Residual Core subgraph. The residual core subgraph (with respect to the new

anchors A′) is defined as the maximal subgraph such that every node in the subgraph has at least

as many neighbors in the subgraph or A′ as its residual degree. We denote the residual core of A′

withR∗A′ .

R∗A′ gives us all the new followers due to A′ (Theorem 6.3), and it can be found e�iciently as de-

scribed in Algorithm 5.

Algorithm 5 The algorithm to find residual core.
1: function FINDRESIDUALCORE(G ,Cf ,A

′)
2: Gf ← Subgraph ofG induced byCf
3: G ← Connected components inGf
4: G ← {S ∈ G : (∃v ∈ S : N(v) ∩ A′ 6= ∅)}
5: X ← Nodes in all the subgraphs in G
6: whileY 6= ∅ do
7: Y ← {v ∈ X : |N(v) ∩ (X ∪ A′) | < δ(v)}
8: X ← X \ Y
9: end while
10: returnX
11: end function

Theorem 6.3. F (A ∪ A′) \ F (A) = R∗A′ .

Proof. Let Y = F (A ∪ A′) \ F (A). Consider v ∈ Y . Then, |Vk,A∪A′ ∩ N(v)| ≥ k and |Vk,A ∩

N(v)| < k . We know that,Vk,A∪A′ = Vk,A ∪A′ ∪Y , whereVk,A andA′ ∪Y aremutually exclusive

by definition. So ∀v ∈ Y ,

|Vk,A∪A′ ∩ N(v)| ≥ k

| (Vk,A ∪ A′ ∪ Y) ∩ N(v)| ≥ k

| ((A′ ∪ Y) ∩ N(v)) | ≥ δ (v |A) .

66

By definition of residual core, we can now see thatY is the residual core with anchorsA′.

Therefore,F (A ∪ A′) \ F (A) = R∗A′ .

Theorem 6.4. Algorithm 5 correctly finds the residual core.

Proof. LetVδ,A be the correct residual core, and S be the set returned by Algorithm 5.

By construction it is easy to verify that, S ⊂ Vk,A and S = {v ∈ Vδ,A : |N(v) ∩ S | < δ(v ,A)}. So,

S ∈ Vδ,A.

Since δ(v ,A) is defined only for v ∈ Cf ,Vδ,A ⊆ Cf .

6.5.4 Bounds on the Number of Anchors

LetGf be the graph induced fromG by the nodes in Cf , and let G be the set of connected compo-

nents in Gf . If nodes in G ′ ∈ G become followers, they cannot e�ect the residual degree of nodes

in other components. Thus, we consider each component separately.

Then forG ′ ∈ G, letV ′i be the set of nodes inG ′ that can become followerwithout relying on nodes

not inG ′, and letV ′o be the set of nodes inG ′ that need anchors not inG ′ become followers. That

is,

V ′i = {v ∈ V ′ : |N(v ,G ′)| ≥ δ(v)}

V ′o =V ′ \ V ′i

whereV ′ is the set of nodes in subgraphG ′, andN(v ,G ′) is the set of neighbors of v inG ′.

If anchors A′ are selected such that all the nodes in V ′o become followers, G ′ become a a residual

core, and converts the remaining nodes,V ′i to followers as well (Theorem 6.3).

As an example, consider Figure 6.4. In this example, the G ′ is indicated by the rectangle, and the

67

Figure 6.4: The nodes inside the box formG ′, and the number represents their residual degrees. The
red nodes are the nodes inCa \ Cf . The green nodes and blue nodes areV ′i andV ′o respectively.

numbers inside the nodes are the residual degrees of the nodes. The red nodes are nodes in Ca.

We can see that the green nodes have at least δ(∗) neighbors within G ′; but the blue nodes need

anchors from among the red nodes. So, the green and blue nodes form V ′i and V
′
o , respectively. It

is easy to see that if the blue nodes are converted to followers, theG ′ becomes a residual core.

By construction, the only neighbors of V ′o not in G ′ are in Ca \ Cf . It can be seen that each node

v ∈ V ′o needs δ(v)− |N(v ,G ′)| anchors fromCa \Cf to become followers. We denote it by δ′ (v).

Then consider,

β⊥ (G ′) = max
v∈V ′o

δ′(v)

β> (G ′) =
∑
v∈V ′o

δ′(v)

β∗ (G ′) = min
v∈V ′o

δ′(v)

If we want to convert all nodes in G ′ to followers, we need at least β⊥ (G ′) anchors from Ca \ Cf .

So, this gives us the lower bound on the number of anchors required.

Now consider the case where none of the nodes in V ′o have any common anchor. In this case all

nodes need to be anchored separately. Then, β> (G ′) give us an upper bound on the number of

anchors required.

If the remaining anchor budget s b′, we have:

68

1. b′ ≥ β> (G ′). All the nodes inC ′ can be converted to followers.

2. β⊥ (G ′) ≤ b′ < β> (G ′). In this case, the budget may or may not be enough to convert all

the nodes inC ′ to followers.

3. b′ < β⊥ (G ′). The budget is not enough to convert all the nodes in G ′ to followers. But it

might be possible for some nodes to become followers.

4. b′ < β∗ (G ′). None of the nodes inG ′ can become a follower.

For a given component, depending on these case, we need di�erent anchor selection strategies.

6.5.5 Residual Anchor Selection

If the anchor budget remaining is enough to convert all nodes inG ′ to followers, we need to select

theminimumnumber of anchors needed. Since the nodes inV ′i already have enough neighbors in

G ′, it is enough to consider onlyV ′o .

We thus need to select theminimum number of anchors fromCa \Cf such that each node v ∈ V ′o

is connected to at least δ′(v) anchors.

Formally, we have a mapping δ′ : V ′o _ Z≥, and a bipartite graph Go = 〈V ′o ,Ca \ Cf ,E ′o〉 where

E ′o is the set of edges betweenV ′o andCa \ Cf . The problem is to find the setA′ such that,

S =
{
Â ⊆ Ca \ Cf : ∀v ∈ V ′o , |N(v ,Go) ∩ Â| ≥ δ′(v)

}
A′ =arg min

X∈S
|X |.

Finding the minimum number of residual anchors is NP-hard and so we propose a heuristic algo-

rithm for this task (Algorithm 6). At each step, the algorithm selects the node from Ca \ (Cf ∪ A′)

that has the most neighbors in T , and adds it to A′. Here T is the set of nodes such that all the

69

nodes inT still requires additional anchors to become followers.

Algorithm 6 Algorithm to find the residual anchors of a connected component.
1: function RESIDUALANCHORS
2: A′ ← ∅
3: T ← V ′o
4: whileT 6= ∅ do
5: v ← arg max

u∈Ca\(Cf ∪A′)
|N(u) ∩ T |

6: A′ ← A′ ∪ {v}
7: T ← {u ∈ T : δ′(u,G ′) > |N(u) ∩ A′|}
8: end while
9: return {(A′,V ′)}
10: end function

Theorem 6.5. Residual anchor selection in NP-hard.

Proof. We will show this by reducing the set cover problem to the residual anchor selection prob-

lem. Suppose we have a set cover problemwith finite setsU ⊆ Z+ and S = {S0,S1, ...} such that

Si ⊆ U .. The set cover problem is to find the set S∗ such that,

S∗ = arg min
S ′⊆S

|S ′|

s.t.
⋃
X∈S ′
X = U

Let us generate the following,

R = {0, 1, ... , |S | − 1}

E = {(i , j) : i ∈ U ∧ i ∈ Sj} .

Nowwecanconstruct abipartite graphB = 〈U,R,E 〉. By construct, there is aone-to-onemapping

between R and S . So, (i , j) ∈ E denotes the membership of i ∈ U to Sj ∈ S . So, with this this

70

construction, the set cover problem can be stated as: findR∗ such that,

R∗ = arg min
R′⊆R

|R ′|

s.t.
⋃
r∈R∗
N(r ,B) = U.

If we have δ′ : U _ 1, the problem has reduced to the residual anchor selection, where U and R

correspond toV ′o andCa \ Cf . So the residual anchor selection problem in NP-hard.

Theorem6.6. Algorithm6givesasolution that iswithina factorh|V ′o | of theoptimal solutionwhere,h|V ′o | =∑|V ′o |
i=1

1
i
.

That is, if the solution found isA′ and the optimal isA∗, |A
′|

|A∗| = h|V ′o |.

Proof. We need to show two things: (1) Algorithm 6 gives a valid Residual Anchor, and (2) the solu-

tion is at most hl times the size of the optimal.

It follows directly form Theorem 6.3, that Algorithm 6 gives a valid Residual Anchor.

Now to prove the second part, we will show that the problem reduces to the set multi-cover prob-

lem.

Consider the setR such that for all v ∈ Ca \ Cf , the set of neighbors of v inV ′o is inR .

R = {N(v) ∩ V ′o : v ∈ Ca \ Cf } .

Then the problem of finding Residual Anchors reduces to finding S ⊆ R such that for all v ∈ V ′o ,

|{T ∈ S : v ∈ T}| ≥ δ′(v).

By construction, |S | is equal to thenumber of theResidual Anchors. So, theproblem is equivalent to

71

finding the set S with minimum cardinality. This is a generalization of the set cover problem called

the setmulti-coverproblem,and it canbesolvedby thegreedyalgorithmwithhl -approximation [92],

where,

hl =

|V ′o |∑
i=1

1

i
.

6.5.6 Anchor Score based Anchors Selection

If the anchor budget is not enough to convert all the nodes inG ′ to followers, wewant to convert as

many as possible. To quantify the quality of a candidate anchor node with respect to maximizing

the number of followers we propose a node-level measure called the Anchor Score. Denote all the

nodes inG ′ byC ′f , and considerC
′
a such thatC ′a = {v ∈ Ca : N(v) ∩ C ′f 6= ∅}.

Then, we define the Anchor Score of v ∈ C ′f ∪ C ′a as

α (v)
def
= 1 +

∑
u∈Cf ∩N(v)

α(u)

δ(u)
. (6.4)

The intuition is that nodes that are connected to others with high anchor score and low residual

degree are important themselves. If nodes with high anchor scores are anchored, this helps in con-

verting its neighbors into followers, which may themselves also be important.

To calculate the anchor scores of all nodes inC ′f ∪ C ′a, we have |C ′f ∪ C ′a| equations:

q = 1+Dq, (6.5)

where q is the vector of anchor scores, 1 is a vector of 1’s, andD is a matrix such thatDi ,j = 1
δ(j)

if

edge (i , j) exist, otherwise 0.

72

Depending on the membership of a node inC ′a and/orC ′f , we have the following conditions:

1. v ∈ C ′f \ C ′a. SinceC ′f ∩ N(v) = ∅ by definition, α(v) = 1.

2. v ∈ C ′f ∩ C ′a. In this case, α(v) appears on both sides of equation 6.5.

3. v ∈ C ′a\C ′f . Here, v cannot appearon the right of theequation. So,α(v) is simple to calculate

once the other two cases have been calculated.

To compute anchor scores, we first set the score for C ′f \ C ′a to 1. We next restrict computation of

Equation 6.5 to only the nodes in C ′f ∩ C ′a, and calculate the anchor scores. Finally, we calculate

the anchor scores ofC ′a \ C ′f using Equation 6.4 and the previously calculated anchor scores.

A�er calculating the anchor scores, the node with the highest value is selected as the next anchor.

The process repeats as long as there is budget le�. Algorithm 7 describes this process.

Algorithm 7 Algorithm to find the anchors based on anchor score.
1: function ASANCHORS
2: A′,F ′,S← ∅, ∅, ∅
3: while |A′| < b do
4: Calculate the Anchor Scores α(∗)
5: v ← arg max

u∈C ′f ∪C ′a
α(u)

6: R ← FindResidualCore(A′ ∪ {u})
7: A′ ← A′ ∪ {v}
8: F ′ ← F ′ ∪ R
9: S← S ∪ {(A′,F ′)}
10: RemoveR and v fromC ′a andC ′f
11: Update δ(∗)
12: end while
13: return S
14: end function

6.5.7 Residual Core Maximization

In this section, we put together the pieces of our proposed algorithm Residual Core Maximization

(RCM). The main idea of RCM is to divide the graph into multiple connected components of Cf , and

73

then to find anchors for these subgraphs separately depending on β> (G ′) (Section 6.5.4). Algo-

rithm 8 describes RCM in detail.

The first step is to generate G, the connected components of the subgraph induced with Cf . RCM

then generates the (anchors, followers) tuples for the components, denoted by S. This step can be

performed in parallel. Next, the problem comes down to finding a setA such that,

Ŝ =

{
S′ ⊆ S :

∣∣∣∣∣⋃
S∈S′
S[0]

∣∣∣∣∣ ≤ b
}

S∗ =arg max
S∈Ŝ

∣∣∣∣∣⋃
S∈S

S[1]

∣∣∣∣∣ ,

where S[i] denotes the i -the element in the tuple S . This problem is close to the set union knap-

sack problem.1 So, we use a greedy algorithm that selects S∗ ∈ S that maximizes |S
∗[1]\F |
|S∗[0]\A| , where

A and F are the sets of anchors selected so far and the followers as a result. This is described in

Algorithm 9.

A�er S∗ (or the approximation) is computed, RCM selects anchors as,

A =
⋃
S∈S∗
S[0].

6.6 Running Time of RCM

In this section we will discuss the running time of RCM. We begin by discussing the running time of

the various components described so far.

Selecting Candidate Anchors: Selection of candidate anchors requires only counting the neigh-
1The set union knapsack problem is a generalization of the knapsack problem in which the weight is calculated

based on union of sets rather than sum of numbers [42]. In our problem, the value is also calculated based on set
unions.

74

Algorithm 8 The Residual Core Maximization algorithm.
1: function RESIDUALCOREMAXIMIZATION
2: A,S← ∅, ∅
3: FindCa,Cf and calculate δ(∗)
4: G ← Connected components inGf
5: forG ′ in G do
6: if β∗ (G ′) > b then
7: continue
8: else if β⊥ (G ′) > b then
9: S← S ∪ ASAnchors(G ′)
10: else if β⊥ (G ′) ≤ b then
11: S← S ∪ ResidualAnchors(G ′)
12: else
13: S← S∪ ResidualAnchors(G ′)
14: S← S ∪ ASAnchors(G ′)
15: end if
16: end for
17: A←SolutionSelection(S, b)
18: returnA
19: end function

Algorithm 9 The algorithm for solution selection in Residual Core Maximization.
1: function SOLUTIONSELECTION
2: A,F ← ∅, ∅
3: while |A| < b do
4: S∗ ← arg max

S∈S

|S[1]\F |
|S[0]\A|

5: S.remove(S∗)
6: if |A ∪ S∗[0]| ≤ b then
7: A← A ∪ S∗[0]
8: F ← F ∪ S∗[1]
9: end if
10: end while
11: returnA
12: end function

75

bors of nodes inVk,A. So,Cf andCa can be found inO
(
|Vk,A|

)
.

Residual Degree: To find the residual degree, we need to count neighbors of all the nodes in Cf .

This can be done inO (|Cf |).

Connected Components: The connected components ofGf can be found inO (|Ef |), whereEf is

the set of edges inGf .

Bound on Number of Anchors: For a componentG ′ ∈ G, we first need to find the set of nodesV ′o

andV ′i . This requires only counting the number of neighbors of the nodes inG
′. So, it can be done

inO (|V ′|). Then we need to count the neighbors of V ′o to find β> (G ′), β⊥ (G ′) and β∗ (G ′). The

running timeof this step isO (|V ′o |). Then, the overall running time for the componentG ′ isO (V ′).

Since we need to find the bounds for all the components, the total running time isO (|Cf |).

Residual Anchors: In Algorithm2 (mainpaper), weneed to check for anchors in (Ca \ Cf)∩N (V ′o).

The number of iterations in the algorithm is of the order of |V ′o | and | (Ca \ Cf) ∩ N (V ′o) | ≤

β> (G ′). So, the running time for component G ′ is O
(
β> (G ′) |V ′o |

)
. Assuming that we need to

find the residual anchors for all the components, the running time is O
(∑

G ′∈G β
> (G ′) |V ′o |

)
≈

O (|Cf |).

Anchor Score based Anchors: For a component G ′, to find the Anchor Score of all the nodes in

C ′f ∪ C ′a. This can be done inO (|E ′fa|), where E ′fa is the set of anchors in the induced subgraph of

C ′f ∪ C ′a. We then need to find the followers of the selected anchor with FindResidualCore()

and this takes O (|C ′f |). Then, if we consider all the components, the time to find b anchors is

O (b · (|Efa|+ |Ca|)) ≈ O (b · |Efa|), where Efa is the set of edges in the induced subgraph of

Cf ∪ Ca.

Overall Running Time: By combining the running time of all di�erent parts, we can get the overall

76

running time of RCM as,

O
(
|Vk,A|+ |Cf |+ |Ef |+ |Cf |+ |Efa|

)
≈ O (|Efa|) .

6.7 Experiments

We evaluate the performance of RCM against various baselines both in finding followers and e�i-

ciency in doing that. We also compare to the optimal algorithm described by Bhawalkar et al. [14]

for k = 2.

Table B.1 lists the real-world networks used in our experiments. These datasets are available at Net-

work Repository2 and SNAP.3 We consider social, web, and collaboration networks of various sizes,

ranging from a few thousands to more 1million edges. We treat all graphs as undirected.

All experiments are performed on a 2.3 GHz 8-core machine with 128GB of RAM that runs Ubuntu

18.04. Algorithms are implemented in Python 3.5.2. Unless otherwise stated, we use only the se-

quential version of RCM in the following discussion and results.

6.7.1 Comparison Against Baseline Algorithms

We consider three baseline algorithms for finding anchor nodes. The first is OLAK, the current state-

of-the-art algorithm for anchor nodes selection [98]. OLAK greedily selects one anchor node at a

time, and recomputes the anchored k-core decomposition in each step. OLAK has been demon-

strated to work well on a number of real-world networks. For fair running time comparison, we

implement OLAK in Python.

The second baseline is Maximum Degree (MD). This algorithm selects a node from Ca that has the
2http://networkrepository.com
3https://snap.stanford.edu/data/index.html

77

http://networkrepository.com
https://snap.stanford.edu/data/index.html

KD ST

50 100 150 200 250 50 100 150 200 250
0

200

400

600

Budget
F
ol
lo
w
er
s

RCM OLAK MD RND

(a) Followers vs Budget.

0

500

1000

CC CH CS FC FN FS KD LB SC SD ST WB WG WH

Networks

F
ol
lo
w
er
s

RCM OLAK MD RND

(b) Followers at b = 250.

Figure 6.5: Number of followers found by RCM and various baselines (at k fixed at the median value).
In Figure 6.5a, the number of followers against the budget is shown for some selected networks. In
6.5b, the number of followers at b = 250 for all the networks considered is shown. Only RCM and the
best baseline is shown. We can see that RCM selects the anchors that result in the largest number of
followers in all cases. (Higher values are better.)

maximum number of neighbors inCf as anchor. The third baseline is Random (RND), which selects

anchors randomly fromCf . In all baselines, a�er ananchor nodehasbeen selected, thenewanchor

and followers are removed fromCa andCf .

We set k to themedian core number of the network (given in Table ??) and vary the anchor budget

from 50 to 250 in increments of 50.

Figure 6.5a shows the number of followers for varying budgets for some selected networks and Fig-

ure 6.5b shows the followers at b = 250 for RCM and the best baseline on all networks. RCM, shown

78

in red, clearly outperforms all the baselines. As expected, the results are closer to OLAK for lower

budgets, but the di�erence increases for higher budgets. Among the baselines, no single algorithm

is always the best. The results for all baselines are in the supplementary material. We also perform

experiments with b = 100 and various k . The results for this experiment are in the supplementary

material. We observe that RCM outperform the baselines in all the cases considered.

Comparison of Time to find Followers: To compare the runtime e�iciency of the various algo-

rithms, we consider the time to find each follower. Figure 6.6a shows the time to to find a follower

against the budget and Figure 6.6b shows the result for RCM and the best baseline4 for all the net-

work at b = 250. In all the cases RCM is much faster than all the baselines. Note that in many algo-

rithms, the average time to find a follower drops as the budget increases because the size ofCa and

Cf drops (as nodes become followers and anchors).

6.7.2 Comparison with Optimal Solution

In this section, we compare the performance of RCM against the optimal solution. Bhawalkar et

al. [14] proposed an algorithm for finding the optimal solution for k ≤ 2. We also include OLAK in

the comparison. For these experiments we consider k = 2 and b = 50.

We also perform experimental comparison for k > 2. In this case, there is no e�icient algorithm for

a general graph. So, the optimal algorithm in this case is exhaustive search overCa. Because of this,

we are limited to small budgets and |Ca|. For this case we consider the networks FC, FS and FN for

k = 3 and b = 10. We denote the optimal solution by OPT.

Table 6.2 shows the comparison between RCM, OPT and OLAK. In all cases, the number of followers

due to RCM is very close to that found by OPT. The followers due to OLAK are much fewer in all the

networks. Additionally, RCM is around 100 times faster than OPT.
4Results for all the baselines are in the supplementary material.

79

KD ST

50 100 150 200 250 50 100 150 200 250

1e+03

1e+04

1e+05

1e+06

Budget
T
im

e
(m

s)

RCM OLAK MD RND

(a) Time to find a follower vs budget.

1e+01

1e+03

1e+05

CC CH CS FC FN FS KD LB SC SD ST WB WG WH

Networks

T
im

e
(m

s)

RCM OLAK MD

(b) Time to find a follower at b = 250.

Figure 6.6: Average time to finda follower byRCMandbaselines. In Figure 6.6a, the the timeat di�erent
budgets is given for selected networks, and in Figure 6.6b the time at b = 250 is shown for RCM and
the best baseline. The value of k is given in Table B.1. RCM is much faster than the baselines in all the
cases. (Lower values are better.)

6.7.3 Experimental Analysis of RCM

In this section evaluate the various aspects of RCM – (a) the contribution of AnchorScore() and

ResidualAnchors() to the overall performance, (b) the speedup due to parallelization, and (c)

scalability with network size.

We evaluate the contribution of ResidualAnchors() and ASAnchors() by designing versions of

RCM that use only one of them. We denote these as RCM-RC and RCM-AS respectively. Results are

shown in Figure 6.7a.We observe that results are clearly better whenweuse both ResidualCore()

and ASAnchors(). Additionally, RCM-RC outperforms RCM-AS in two out of the three networks.

80

Network k b Alg. Followers Time (ms)

KD
RCM 114 1.2× 102

2 50 OPT 115 1.9× 104

OLAK 97 1.5× 104

LG
RCM 150 3.5× 102

2 50 OPT 152 2.9× 104

OLAK 133 9.6× 103

LB
RCM 160 9.0× 101

2 50 OPT 161 4.0× 103

OLAK 117 2.1× 103

WG
RCM 180 3.9× 103

2 50 OPT 186 2.6× 105

OLAK 95 6.2× 104

FC
RCM 9 1.7× 101

3 10 OPT 10 3.7× 105

OLAK 8 1.6× 103

FS
RCM 8 4.6× 101

3 10 OPT 10 3.7× 105

OLAK 5 1.7× 104

FN
RCM 10 3.2× 101

3 10 OPT 10 1.6× 104

OLAK 9 7.4× 103

Table 6.2: Comparison of RCM, OPT and OLAK. Observe that in all the cases, RCM is very close the OPT
while being multiple magnitudes faster.

RCM-AS outperforms RCM-RC in the network FS because |G| = 2 and the budget is not enough

to completely convert any component to followers.

To evaluate the speedup due to parallelization (Section 6.5.7), we limit the number of CPU cores

available and compare the computation time.5 Figure 6.7b shows the results of this experiment.

In most networks RCM achieves significant speedup with CPU cores. However, in the case of FS

network there is no speedup. This is because there are only two components – a large one and a

very small one, making parallelization ine�ective.

We evaluate the scalability of RCMwith network size. As described in Section 6.6 the runtime of RCM

is given byO (|Efa|), where Efa is the set of edges in the subgraph induced by Cf ∪ Ca. Figure 6.7c

shows the running timeof RCMagainst |Efa| for all thenetworks in Table ??. As expected, the runtime
5The k value is given in Table B.1 and b = 100.

81

0

100

200

300

KD CH FS

Networks

F
ol
lo
w
er
s

RCM

RCM-AS

RCM-RC

(a) Follower count due to RCM,
RCM-RC and RCM-AS.

1

2

3

4

5

6

2 4 6 8

Processor Cores

S
p
ee
d
u
p

CH

FS

KD

LB

(b) Speed up due to parallel compu-
tation.

0

200

400

600

800

0 10000 20000 30000 40000

Edges

T
im

e
(s
)

(c) Running timeofRCMagainst |Efa|.

Figure 6.7: Experimental results for analysis of RCM. Figure 6.7a shows the contribution of di�erent
parts of RCM, Figure 6.7b shows the speedup due to parallel computation, and Figure 6.7c shows the
running time against |Efa|.

is linear in |Efa|.

6.8 Conclusions

We addressed the anchored k-core problem: given an anchor budget, what is the set of anchor

nodes that shouldbe selected tomaximize thenumber of followers?Weproposedamethod, called

Residual Core Maximization (RCM). Through extensive experimental analysis, we demonstrate that

RCM performs significantly better than the state-of-the-art algorithms. On average, RCM finds 1.65

times the followers found by the best baselinemethod, while taking being 500 times faster. We also

compared RCM against the optimal solution and observed that the number of followers found by

RCM is very close to the optimal; and the time to find each follower is around 100 times faster.

82

Chapter 7

Skeletal Core Graph

In the preceding chapters, we studied the resilience of k-cores to various types of changes. The

behavior of a graph to a certain type of change is dictated by various factors – including the num-

ber of ‘extra’ edges and the structure of the graph itself. For example, when we studied the core

resilience Chapter 4, the number of extra edges is captured with core strength, and we found that

it plays an important part in determining how resilient a graph is. Higher core strength generally

translates to higher core resilience. Similarly, when we study the anchored k-core problem Chap-

ter 6, we observed that there are some graphs in which it is easy to select anchors that has a lot of

followers; and in some others the number of followers is very low. We know that extra edges does

play a role here too – the residual degree is a measure of that. With regards to the collapsed k-core

problem Chapter 5, we know that if there are very few nodes with relative core strength of 1, we are

likely to find smaller core unstable graph. Thus, the number of ‘extra’ edges directly have an a�ect

on the collapse resilience of a graph.

However, we also know that the graphs structure beyond thesemetrics plays a very important role.

In the core resilience, this is captured with core influence – some nodes are more important than

others based where it is located in the graph. Similarly, in anchored k-core problem, we know that

the connected components in the induced subgraph of the candidate anchors is an important fac-

tor in determining if we can find anchors with a lot of followers or not. Lastly, we know that the size

83

of the core unstable graph is dependent on the graph structure.

So, to better understand the behavior of di�erent graphs to these changes, it is important to under-

stand purely the e�ect that structural organization of the di�erent shells has. For example, does a

graph in which there are a lot of connections between the di�erent shells have higher resilience to

core structural changes and why? Answer to such questions can help us in designing better algo-

rithms to improve the resilience or estimate the resilience of a large graph.

So, in this chapter we introduce the idea of Skeletal Core Graph. We can think of the skeletal core

graph of a graph as the minimal graph that has the same k-core structure but without all the extra

edges. We consider two extreme cases of skeletal core graphs based on the connections between

the shells and showhow the resilience is a�ected. Given a graph, we also propose away to quantify

where its skeletal core lies within these two extreme cases.

We begin by describing the skeletal core graph and properties associated with it in Section 7.1. We

describe the two extreme cases of skeletal core graph – Centralized and Decentralized Core Graphs.

We propose Core Centralized Scorewhich is ameasure of where a skeletal core graph falls between

these extreme cases. Then we describe how we describe the skeletal core sub-graph of a graph

(Section 7.1.2, and given a graph, estimate where its skeletal core subgraph is likely to fall between

the centralized and decentralized core graphs. In Section 7.2, relate the core structural change of

a graph to its skeletal core subgraph; and in Section 7.3 we explain how the di�erent structures of

the skeletal core subgraph can help explain some of the observed behavior in the graph unraveling

problem.

For a graphG = 〈V ,E 〉, we will use the notations described in Table 7.1.

84

Notation Description
Gk = 〈Vk ,Ek〉 The k-shell subgraph.
Ei ,j The edges between the i -shell and the j -shell.
κG(v) The core number of node v in graphG .
k∗G The degeneracy of the graphG .
ΓG(v) The neighbors of v in graphG .
ΓkG(v) The neighbors of v in κ(v)-core.

Table 7.1: Notations used in Chapter 7.

7.1 Skeletal Core Graph

Wedefine a skeletal core graph as the graphGσ = 〈V σ,Eσ〉 such that for anyG ′ = 〈V ,E ′〉, where

E ′ ⊂ Eσ, 6 ∃v ∈ V : κGσ(v) 6= κG ′(v). That is, it is the graph where any edge removal results in

at least one node dropping its core number. Since the since the skeletal core graph does not have

any ‘extra’ edges its behavior regarding the resilience to changes in the core structure is purely due

to connections between the shells (and consequently within the shell).

Theorem 7.1 (Core Strength Condition for Skeletal Core Graph). If Gσ = 〈V σ,Eσ〉 is a skeletal

core graph, there exists no edge (u, v) such that CS(u) > 1 and CS(v) > 1, where CS(u) is the

core strength of node u (Section 4.3.2).

Proof. We can see that in any graph, if the core number of any node changes on removal of an edge

(u, v), the core number of u and/or v should have also changed. That is, it is not possible for a

node other than u, v to change core number but for both u and v to not change when edges (u, v)

is deleted.

Assume that there exists an edges (u, v) in the skeletal core graph Gσ such that CSGσ(u) > 1

and CSGσ(v) > 1. Then, if we remove this edge to get graph G ′ = 〈V σ,Eσ \ {(u, v)}〉, the core

strength of u and v drops by at most 1. That is,CSG ′(u) ≥ 1 andCSG ′(v) ≥ 1. So, by definition of

core strength, the neither u or v changes core number; and consequently there are no other nodes

in the graph that changes core number due to the edge deletion.

85

This means thatGσ was not a skeletal core graph. Hence, proved by contradiction.

Theorem 7.1 provide us a way to check if a given graph is a skeletal core graph e�iciently. A�er the

k-core decomposition, we need to calculate the core strength of all the nodes, and check if there

are any edge where both endpoints have core strength greater than 1. Algorithm 10 describes this

in more details.

Algorithm 10 Algorithm to check if a graph is a core skeletal graph or not.
1: function CHECKSKELETALCORE(G = 〈V ,E 〉)
2: CS ←CoreStrength(G)
3: for (u, v) ∈ E do
4: if CS [u] > 1 ∧ CS [v] > 1 then
5: return False
6: end if
7: end for
8: return True
9: end function

Theorem 7.2 (Complexity of Algorithm 10). The time complexity of Algorithm 10 isO(|E |); and the

space complexity is alsoO(|E |).

Proof. The time complexity of calculating the core strength of all nodes in a graph isO(|E |). Then

weneed tocheck thecore strength for all theedges. This canalsobedone inO(|E |). So, the running

time of Algorithm 10 isO(|E |).

We do not need to store the input graph while calculating the core strength of all the nodes – that

isO(|E |). We needO(|V |) to store the core strengths of all the nodes. So, the space complexity of

Algorithm 10 is alsoO(|E |).

Theorem 7.3 (Correctness of Algorithm 10). Algorithm 10 always returns True for a valid skeletal

core graph, and False otherwise.

Proof. Theorem 7.1 returns False i� there exist an edge (u, v) such thatCS [u] > 1 andCS [v] > 1.

If there exists such an edge, we know from Theorem 7.1 that the graph is not a skeletal core graph.

86

Similarly we can show that Algorithm 10 returns True only if the graph is a skeletal core graph.

7.1.1 Categorization of Skeletal Core Graphs

To better understand the e�ects of di�erent type of changes to the core structure of a skeletal core

graph, we need to categorize them into di�erent types. We start by categorizing the edges based on

the core numbers of its endpoints:

1. Inter-Shell Edges: These are the edges whose end vertices have the same core number.

2. Intra-Shell Edges: These are the edges whose end vertices have di�erent core numbers.

Depending on the number of inter and intra shell edges, we have two extreme cases of skeletal core

graphs. We call them centralized and decentralized skeletal core graphs.

1. Decentralized Skeletal Core Graph: There are the skeletal core graphs with no inter-shell

edges.

2. Centralized Skeletal Core Graph: These are the skeletal core graphs with: (a) no intra-shell

edges, except in the degeneracy core, and (b) all the inter-shell edges have one endpoint in

the degeneracy core.

As an example consider the toy graphs shown in Figure 7.1. The color of the nodes indicates their

core number – red is 3, green is 2 and blue is 1. We can see that both of the graphs are core skeletal

graphs. In Figure 7.1a all the nodes connects only to another that have the same core number. So

this is an example of a decentralized skeletal core graph. In Figure 7.1b, all the nodes connects to a

node in the degeneracy core (red nodes). So, Figure 7.1b is an example of a centralized skeletal core

graph.

In the rest of the discussion, we will used GσD = 〈V σ
D ,EσD〉 and GσC = 〈V σ

C ,EσC 〉 to denote de-

centralized skeletal and centralized core graphs respectively.

87

(a) Decentralized Skeletal Core Graph (b) Centralized Skeletal Core Graph

Figure 7.1: Toy example showing Decentralized (Figure 7.1a and Centralized (Figure 7.1b) Skeletal Core
Graphs.Here the red, greenandbluenodeshavecorenumbersof3,2and1 respectively. In Figure 7.1a,
we can see that all the nodes connects to a node in the degeneracy core (red node). In Figure 7.1b all
the nodes are connected to another one with the same core number.

3-Shell

2-Shell

1-Shell

3-Shell

2-Shell

1-Shell

3-Shell

2-Shell

1-Shell

3-Shell

2-Shell

1-Shell

Decentralized Centralized

More
Decentralized

More
Centralized

Figure 7.2: Di�erent skeletal core graphs falls between centralized and decentralized core graphs.

88

Depending on the number of inter and intra-shell edges, all the core skeletal graphs will fall some-

wherebetweendecentralizedandcentralizedcoregraphsFigure7.2. Toquantifywhere it fallswithin

this range, we propose the Centralized Scoremeasure.

The basic idea behind centralized score is that for a node u, the closer its neighbors in the κ(u)-

core are to the degeneracy core, the more central the node is u. So, for a skeletal core graphGσ =

〈V σ,Eσ〉, we define the Centralized Score as,

CE(G) =
1

|V σ \ V σ
k∗|

∑
v∈V \Vk∗

1

|Γκ(v)(v)|
∑

u∈Γk(v)(v)

κ(u)− κ(v)

k∗ − κ(v)
. (7.1)

Higher values of centralized score indicates that that graph is closer to a centralized skeletal core

graph, and lower values indicates that it is closer to a de-centralized skeletal core graph. Decentral-

ized skeletal core graphs have a centralized score of 0, and centralized skeletal core graphs have a

centralized score of 1.

7.1.2 Skeletal Core Subgraph of a Graph

Given a graph G = 〈V ,E 〉, we can obtain a subgraph Gσ = 〈V ,Eσ〉; Eσ ⊆ E such that Gσ is a

skeletal core graph. We callGσ the skeletal core subgraph ofG .

We can use Theorem 7.1 to find the edges to delete. At each step, all the edges that connects nodes

with core strengthgreater than1are candidate fordeletion. A randomedge fromthesecandidates is

selected, and removed from the graph. Then, the core strengths are recomputed and the candidate

sets are generated again. This continues until there are no more candidate edges to remove. This

is described in Algorithm 11.

Theorem 7.4 (Complexity of Algorithm 11). The time complexity of Algorithm 11 isO(|E |); and the

space complexity is alsoO(|E |).

89

Algorithm 11 Algorithm to reduce a graph to its skeletal core subgraph
1: function SKELETALCOREDECOMPOSITION(G = 〈V ,E 〉)
2: R ← ∅
3: repeat
4: CS ←CoreStrength(G)
5: R ← {(u, v) ∈ E : CS [u] > 1 ∧ CS [v] > 1}
6: X ← Random element ofR
7: E ← E \ {X}
8: untilR = ∅
9: returnG
10: end function

Proof. Computing the core strength of all the nodes for the first time can be done in O(|E |). For

the subsequent steps, instead of recomputing it, we can simply calculate it for only those nodes

involved in an edge deletion since we have the guarantee that the core number does not change

due to the edge deletion.

Then, updating the core strength of a node can be done in constant timewith proper data structure.

The loop in Algorithm 11 repeats for at most |E | times, and one edge deletion results in update of

the core strength of two nodes. Inside each loop, the sets R and E can be found quickly through

proper pruning.

So, the overall running time of Algorithm 11 isO(|E |).

The space required to store the graph isO(|E |), the core strengths of all the nodes can be stored

inO(|V |), and that forR isO(|E |).

So, the overall space complexity of Algorithm 11 isO(|E |).

Theorem 7.5 (Correctness of Algorithm 11). Algorithm 11 correctly outputs a skeletal core subgraph

of the input graph.

Proof. We know that removing an edge (u, v) cannot change the core number of u or v if their core

strength is greater than 1.

90

(a) (b) (c)

Figure 7.3: Example graph demonstrating the non-uniqueness of skeletal core subgraph.

We can see that Algorithm 11 exits the loop when R = ∅. So, by Theorem 7.1, if the loop terminates

the output graph is a skeletal core graph. Becausewe are dealing with finite graph, it is not possible

for the loop to not terminate.

So, Algorithm 11 correctly outputs the skeletal core subgraph of the input graph.

Theorem 7.6 (Non-Uniqueness of Skeletal Core Subgraph). The skeletal core subgraph of a graph

is not necessarily unique.

Proof. Consider the graph shown in Figure 7.3a. The graphs shown in Figure 7.3b and Figure 7.3c

are subgraphs, and both are skeletal core graphs.

CORE CENTRALIZED SCORE: To quantify how far a graph is from the centralized or decentralized

skeletal core, we extend the concept of Core Centralized Score to a general graph. The core central-

ized score of a general graph is defined as the expected core centralized score of its skeletal core

subgraphs.

For a graphG = 〈V ,E 〉, the likelihood of an edge (u, v) remaining in the skeletal core subgraph is

dependent on the core number and number of neighbors in the same core of the node with lower

91

core number (both nodes if they have the same core number). That is,

p(u, v) =

κ(u)
e(u)

κ(v)
e(v)

if κ(u) = κ(v)

κ(u)
e(u)

if κ(u) < κ(v)

κ(v)
e(v)

if κ(u) > κ(v)

(7.2)

where,

e(u) = |Γκ(u)(u)|. (7.3)

For edge (u, v), p((u, v),G ′) gives us a measure of how likely the edges are to be in the skeletal

core. If p((u, v),G ′) = 1, the edge (u, v) has to be in all the skeletal core decomposed graphs of

G ′.

Then, we define the Core Centralized Score of graphG as,

CE(G) =
1

|V \ Vk∗|
∑

v∈V \Vk∗

1

|Γκ(v)(v)

∑
u∈Γκ(v)(v)

p(u, v)
κ(u)− κ(v)

κ∗ − κ(v)
. (7.4)

7.1.3 Generative Model for Random Skeletal Core Graph

When we study the k-core structure of a skeletal core graph, we ask if the observed behavior is

expected for a random skeletal core graph with the same core number sequence of the nodes, or

whether it is due to some other aspect of graph structure. To answer this, we need to compare the

observedmodelwith thenullmodel – a randomgraphwith the samecorenumber sequence. There

has been some works on generating graphs with a predefined k-core structure [12, 11]. However,

these previous models needs the number of inter- and intra- shell edges in addition to the core

number sequence – e�ectively restricting they type of graphs they can generate. So, we propose a

92

method to generate a random skeletal core graph with a given core number sequence.

Given a set of nodesV , assume that we have amapping c : V _ Z+. We call a graphG = 〈V ,E 〉

is valid with respect to the mapping c , if ∀v ∈ V , κ(v ,G) = c(v). That is, suppose every node

inV has an integer mapped with it. A graph is called valid with respect to this mapping, if the core

number of all the nodes in the graph is equal to the integer that is mapped to it.

If there is a subset V ′ ⊂ V , such that there is a graph G ′ = 〈V ′,E ′〉 where ∀v ∈ V ′, κ(v ,G ′) =

c(v), wewill refer toG ′ aspartially valid. That is, if only a subset of nodes forwhich the core number

and the integer mapped to it matches, we call it partially valid.

Now the problem is given V and c , how can we generate a random graph G = 〈V ,E 〉 that is

valid with respect to c . There are some mappings c for which no valid graph exists. So, we start by

considering the necessary conditions for c so that a valid graph can be generated.

Theorem7.7 (Coreness Validity Constraint). For a givenmapping c , a valid graph exists i� ∀v ∈ V ,

| {u ∈ V \ {v} : c(u) ≥ c(v)} | ≥ c(v).

That is, a valid graph can exist if and only if for every node u ∈ V , there are asmany other nodeswith

same or greater core number than the core number of u.

Proof. Wewill show the proof in two steps: (1) if the coreness validity condition is not satisfied, there

can be no valid graph, and (2) if the coreness validity condition is satisfied, there is always a valid

graph.

Step 1: Assume that that the coreness validity condition is not satisfied. Then there exists at least

one node v ∈ V such that, | {u ∈ V \ {v} : c(u) ≥ c(v)} | < c(v).

Then, there are not enough nodes that v can connect to to obtain a core number of c(v). That is,

v cannot be in any graph valid with c . Therefore, it so not possible to obtain a valid graph if the

coreness validity condition is not satisfied.

Step 2: In this step, we need to show that if the coreness validity condition is satisfied, a valid graph

93

exist. We will show this by induction. We begin by assuming that the coreness validity condition is

satisfied.

Let k∗ = max
u∈V
c(u), andV ∗ = {u ∈ V : c(u) = k∗}. If we pick any node v ∈ V ∗, by the coreness

validity condition,

| {u ∈ V \ {v} : c(u) = k∗} | ≥ k∗

|{v} ∪ {u ∈ V \ {v} : c(u) = k∗} | ≥ k∗ + 1

|V ∗| ≥ k∗ + 1.

This means that we can construct a graph G ∗ = 〈V ∗,E ∗〉 such that every node is connected to

k∗ other nodes. So, G ∗ is partially valid. Therefore, if the coreness validity condition holds, there is

always a partially valid graph.

Suppose that we have two nodes u, v in graphG ′ such that, κ(u,G) < κ(v ,G). By the definition

of k-core, adding an edge (u, v) can never change the core number of v .

Now assume that there is a partially valid graphG ′ = 〈V ′,E ′〉 such thatV ∗ ⊆ V ′. Consider a node

v ∈ V \ V ′, and add it toG ′ without any edges. Then, κ(v ,G ′) = 0. Let,

S = {u ∈ V ′ : c(u) ≥ c(v)}

|S | ≥ k∗

|S | > c(v).

That is there are enough nodes inG ′ for v to connect in order to get a core number of c(v). So, we

can connect v to c(v) other nodes in S , and the resulting graph is also partially valid.

If we keep repeating this process we will reach a point at whichV ′ = V . So, if the coreness validity

condition holds, a valid graph always exist.

94

Therefore from Step 1 and 2, Theorem 7.7 follows.

In Step 2 of the proof for Theorem 7.7, we describe a method for constructing a k-core graph for a

given distribution of core number. In the graph that is generated, if any edge is removed the core

number of at least one node will change. So, it is a skeletal core graph.

Algorithm 12 describes the process of generating a random skeletal core graph from a given core

number distribution.

Algorithm 12 Algorithm for generating a random skeletal core graph of given core number se-
quence.
1: function GENERATERANDOMSKELETALCOREGRAPH(c)
2: if !CorenessValidityCondition(c) then
3: return None
4: end if
5: V ← ∅
6: E ← ∅
7: G ← 〈V ,E 〉
8: k∗ ← max

(i ,j)∈c
j

9: while k∗ > 0 do
10: S ← {(i , j) ∈ c : j = k∗}
11: V ← V ∪ {i : (i , j) ∈ S}
12: while |S | > 0 do
13: (i0, j0)← Pop random element from S
14: N ← Select j0 random element fromV \ {i0}
15: E ← E ∪ {(i0, i1) : ii ∈ N}
16: S ′ ← {(i1, j1) ∈ S : i1 ∈ N}
17: S ′′ ← {(i1, j1 − 1) ∈ S : j1 − 1 > 0}
18: S ← (S \ S ′) ∪ S ′′
19: end while
20: k∗ ← k∗ − 1
21: end while
22: end function
23: returnG

Theorem 7.8 (Complexity of Algorithm 12). Both the time and space complexity of Algorithm 12 is

linear with the number of nodes.

Proof. We can see that checking the coreness validity constraint is linear with the number of nodes.

95

We can also see that the loops will execute for O(|V |). So, the running time of Algorithm 12 is

O(|V |).

Similarly we can show that the space complexity of Algorithm 12 isO(|V |).

Theorem 7.9 (Correctness of Algorithm 12). If c : V _ Z+ is desired the mapping from node id to

core number, Algorithm 12 outputs a graphG where ∀v ∈ V , c(v) = κ(v).

Proof. We will divide the proof into two parts:

1. Show that all the nodes in the degeneracy core have a coreness of k∗.

2. Show that any node v , added a�er the degeneracy core has coreness of c(v) and does not

change the coreness of any previously added node.

In Algorithm 12, E is the set of edges. So, when we talk about degree we are referring to the degree

w.r.t to the edges in E .

Part 1: Suppose for some k < max
v∈V
c(v) and V ′ = {v ∈ V : c(j) > k}, we already have

G ′ = 〈V ′,E ′〉 such that ∀v ∈ V ′, κ(v ,G ′) = c(v).

LetV = {v ∈ V : c(v) = k}. We need to show that a�er one iteration of the while loop (Steps 12-

19) : (a) all nodes inV have a coreness of c(v), and (b) no node inV ′ changed their coreness.

Be construction, ∀v ∈ V , the node v gets connected to c(v) nodes from V ′ ∪ V . So, all nodes in

V ′ ∪ V we be in the k-core a�er the while loop terminates. Again by construction when an edge

(i0, i1) is added (Step 15), it is guaranteed that i0 is not already in the k-core. So the coreness of no

other can increase beyond k by this edge addition.

So, all nodes in V gets a coreness of k and the coreness of no node in V ′ changes a�er the while

loop.

Part 2: We need to show that in the first iteration of the while loop (Steps 12-19), all nodes in V =

96

{v ∈ V : c(v) = k∗} gets a coreness of k∗.

In this case, V ′ = ∅, and like in Part 1, every node in V is guaranteed to have at least k∗ neighbors

inV by the end of the while loop. So, all nodes inV will be in the k∗-core.

Again, when an edge (i0, i1) is added, it is guaranteed that i0 is not in the k∗-core already. So, this

edge addition cannot increase the coreness of i1 beyond k∗.

So, at the end of the while loop all nodes inV have a coreness of k∗.

From Part 1 and 2, by induction, we can see that Algorithm 12 outputs a graph G where ∀v ∈ V ,

c(v) = κ(v).

Theorem 7.10. LetG ∗ = 〈V ∗,E ∗〉 be the degeneracy core of the skeletal core graph. Then the num-

ber of edges is, ⌈
k∗ · |V ∗|

2

⌉
≤ |E ∗| ≤

⌈
k∗ · |V ∗|

2

⌉
+ 1.

Proof. Recall that in a skeletal core graph, there are no edges (u, v)where the core strength of both

u and v are greater than 1.

Let us consider the two sets:

V> = {v ∈ V ∗ : CS(v) > 1}

V⊥ = V ∗ \ V>.

For simplicity we consider the case where k∗ · |V ∗| is even. We consider two boundary cases: (1)

V> = ∅, and (2) arg max |V>|.

Case 1: WhenV> = ∅.

In this case, all the nodes are inV⊥, i.e. all nodes have k∗ neighbors inV ∗. So, the number of edges

97

is:

|E | ≥ k
∗ · |V⊥|

2
=
k∗ · |V |

2
.

Case 2: When arg max |V>|.

We know that every node inV> connects to at (k∗+ 1) nodes inV⊥, and any node inV⊥ can have

at most k∗ connections toV>. That is,

k∗ · |V⊥| ≥ (k∗ + 1) · |V>|

|V>| ≤ k
∗ · |V⊥|
k∗ + 1

.

We know that,

|V>|+ |V⊥| = |V ∗|
2k∗ + 1

k∗ + 1
|V⊥| ≥ |V ∗|

|V⊥| ≥ k
∗ + 1

2k∗ + 1
· |V ∗|.

When we have max |V>|, we get min |V⊥|. By definition, there are no edges between any pair of

node fromV>, and every node inV⊥ has exactly k∗ connections. In this case the number of edges

is,

|E | ≤ k
∗ · (k∗ + 1)

2k∗ + 1
|V ∗|.

If we generalize to cases where k∗ · |V ∗| can be odd,

⌈
k∗ · |V ∗|

2

⌉
≤ |E ∗| ≤

⌈
(k∗ + 1) · k∗ · |V ∗|

2k∗ + 1

⌉
.

98

For k∗ > 0,

max

(⌈
(k∗ + 1) · k∗ · |V ∗|

2k∗ + 1

⌉
−
⌈
k∗ · |V ∗|

2

⌉)
= 1. (7.5)

Thus,

⌈
k∗ · |V ∗|

2

⌉
≤ |E ∗| ≤

⌈
k∗ · |V ∗|

2

⌉
+ 1.

7.2 Skeletal Core Graph and Core Structural Change

In this section, we estimate the core resilience of a core skeletal graph. The core resilience is defined

as the rank correlation between the rankings of the nodes, as ranked by the core numbers, before

and a�er edge deletion. Once an edge is deleted from a core skeletal graph, the resulting graph is

no longer a core skeletal graph. So, we start by examining the e�ect of one edge deletion. We also

make the simplifying assumption that there are only two shells: the k-shell and the (k − 1)-shell.

This does not a�ect the overall validity as we can further extend the same argument by considering

lower shells.

To calculate the core resilience ofG , we need to compute the following in steps:

1. Probability that the deleted edge is from Ek , Ek−1 and Ek,k−1. Represent these by p(Ek),

p(Ek−1) and p(Ek,k−1) respectively.

2. Core resilience as a result of the edge deletion from each set of edges. Represent these by

r(Ek), r(Ek−1) and r(Ek,k−1).

99

3. Core resilience ofG , is

R(G) = p(Ek)r(Ek) + p(Ek−1)r(Ek−1) + p(Ek,k−1)r(Ek,k−1).

7.2.1 Core Resilience of Skeletal Core Graph

For simplicity, assume that there are only two shells – the k-shell and the (k−1)-shell, in a skeletal

core graph, Gσ = 〈V σ,Eσ〉. Let |Vk | = n, |Vk−1| = fn, and |Ek−1| = g. As described above, the

result easily generalizes to more shells.

STEP 1:

|Ek | =
kn

2
(7.6)

|Ek−1| ≤
(k − 1)fn

2
(7.7)

|Ek,k−1| ≤ (k − 1)fn (7.8)

An edge in Ek−1 is responsible for the core number of 2 nodes in the (k − 1)-shell, and an edge in

Ek,k−1 is responsible for the core number of 1 node in the (k − 1)-shell. So,

|Ek,k−1| = 2(
(k − 1)fn

2
− |Ek−1|) (7.9)

= (k − 1)fn − 2g (7.10)

Then,

|E | =
kn

2
+ g + (k − 1)fn − 2g =

n

2
(k + 2(k − 1)f − 2g). (7.11)

100

The probabilities of the random edge being deleted from the di�erent sets of edges is given by,

p(Ek) =
kn

k + 2(k − 1)f − 2g
(7.12)

p(Ek−1) =
2g

k + 2(k − 1)f − 2g
(7.13)

p(Ek,k−1) =
2((k − 1)fn − 2g)

k + 2(k − 1)f − 2g
(7.14)

STEP 2: We need to consider three cases: (1) core resilience due to edge deletion from Ek , (2) core

resilience due to edge deletion fromEk−1, and (3) core resilience due to edge deletion fromEk,k−1.

Case 1: Edge deletion from Ek .

Letm the the number of nodes that change core number due to the edge removal. We can easily

show that these nodes will now be in the the (k − 1)-shell.

There are two factors that contributes to the concordant pairs count1:

� The pairing between the nodes that do not change core number. That is,
(
n+fn−m

2

)
.

� The pairing between the nodes that change core number. That is,
(
m
2

)
.

So, the number of concordant pairs is,

(
n(f + 1)−m

2

)
+

(
m

2

)
. (7.15)

There is only one factor that contributes to the discordant pairs count: the pairing between the

nodes that change core number and those that did not. So, the number of discordant pairs is:

m(n(f + 1)−m) (7.16)

1Recall that we count ties as concordant in the definition of core resilience.

101

Then, the core resilience is,

r(Ek) =

(
n(f+1)−m

2

)
+
(
m
2

)
−m(n(f + 1)−m)(
n(f+1)

2

) (7.17)

=
1(

n(f+1)
2

) ((n(f + 1)

2

)
− 2m (n(f + 1)−m)

)
(7.18)

= 1− 2

c

(
mn(f + 1)−m2

)
, (7.19)

where c =
(
n(f+1)

2

)
is a constant and does not change because the total number of nodes is con-

stant.

We can show that k ≤ m ≤ n. The minimum value of m is when both endpoints of the deleted

edge are in a clique; and themaximum value ofm is when the entire k-shell collapses in a cascade.

Now,

d
dm
r(Ek) = 0 (7.20)

−n(f + 1) + 2m = 0 (7.21)

m =
n(f + 1)

2
(7.22)

We know thatm should be within the range [k , n]. So

min r(Ek) = 1− n
2f

2c
whenm = n (7.23)

max r(Ek) = 1− 2

c
(kn(f + 1)− k2)whenm = k (7.24)

Case 2: Edge deleted from Ek−1.

Again, let m the number of nodes that changes core number. Then, there are three factors that

a�ects the concordant pairs count:

� The pairing between the nodes that do not change core number. That is,
(
n(f+1)−m

2

)
.

102

� The pairing between the nodes that change core number. That is,
(
m
2

)
.

� The pairing between the nodes that change core number and the nodes in k-shell. That is,

mn.

So, the number of concordant pairs is,

(
n(f + 1)−m

2

)
+

(
m

2

)
+mn =

(
n(f + 1)

2

)
−mfn +m2. (7.25)

There is only one factor that a�ects the number of discordant pairs – the pairing between the nodes

that change core number and the rest of the nodes in the (k − 1)-shell. That is the number of

discordant pairs is,

m(fn −m) = mfn −m2. (7.26)

Then, the core resilience is,

r(Ek−1) =
1

c

((
n(f + 1)

2

)
− 2mfn + 2m2

)
(7.27)

= 1− 2

c
m(fn −m). (7.28)

When an edge inEk−1 is deleted, we can guaranteed that at least the two endpoints of the edgewill

drop core number. So,

2 ≤ m ≤ nf . (7.29)

We can get a tighter bound by considering the number of edges in |Ek−1|.

Now let us calculate the minimum andmaximum value of the core resilience. Themaximum value

103

of r(Ek−1) is 1, and it happens whenm = nf . Now,

d
dx
r (Ek−1) = 0 (7.30)

−2

c
(fn − 2m) = 0 (7.31)

m =
fn

2
. (7.32)

So, we have,

max r(Ek−1) = 1whenm = fn (7.33)

min r(Ek−1) = 1− f
2n2

2c
whenm =

fn

2
(7.34)

Case 3: Edges deleted from Ek,k−1.

Again in this case, letm be the number of nodes that changes core number; and all of them come

from the (k − 1)-shell. So, like in the Case 2, the core resilience is given by,

r(Ek,k−1) = 1− 2

c
m(fn −m). (7.35)

In this case, only one endpoint of the deleted edge is is the (k − 1)-shell. So,

1 ≤ m ≤ fn. (7.36)

104

7.2.2 Core Resilience of Decentralized Core Skeletal Graphs

In a decentralized core skeletal graph, Ek,k−1 = ∅. So, the probability of edge deletion is given by,

p(Ek) =
k

k + f (k − 1)
(7.37)

p(Ek−1) =
f (k − 1)

k + f (k − 1)
(7.38)

p(Ek,k−1) = 0 (7.39)

Letm0 andm1 be the number of nodes that changes core number if an edge is deleted in Ek and

Ek−1 respectively.

Then the expected core resilience is,

R(GσD) = p(Ek)r(Ek) + p(Ek−1)r(Ek−1) (7.40)

=
k
(

1− 2
c

(m0n(f + 1)−m2
0)
)

k + f (k − 1)
+
f (k − 1)

(
1− 2

c
(m1nf −m2

1)
)

k + f (k − 1)
(7.41)

= 1−
2
(
k(m0n(f + 1)−m2

0) + f (k − 1)(nm1f −m2
1)
)

c(k + f (k − 1))
(7.42)

Random Skeletal Core Graph: Under the assumption that nk and nf (k − 1) are even, it is easy

to see thatGDk andG
D
k−1 are k-regular and (k − 1)-regular graphs respectively. We know that for ‘a

random r -regular graphof large size is asymptotically almost surely r -connected’[18].We also know

that when an edge is deleted in a skeletal core graph, all the nodes in the connected component

that the node with lower number belongs to drops to a lower core. That is,

m0 = n (7.43)

m1 = fn (7.44)

105

So, resilience,

R(GD) = 1− 2(k(n2(f + 1)− n2) + f (k − 1)(f 2n2 − f 2n2))

c(k + f (k − 1))
(7.45)

= 1− 2n2kf

c(k + f (k − 1))
(7.46)

SkeletalCoreSubgraph: Ifwearenotdealingwitha randomgraph, but rather, the result of skeletal

core decomposition of a given graph, we need to replace mk and mk−1 with the expected size of

the connected component that a randomly chosen node belongs to.

7.2.3 Core Resilience of Centralized Core Skeletal Graph

In a decentralized core skeletal graph, Ek−1 = ∅. So, the probability of edge deletion is given by,

p(Ek) =
k

k + 2f (k − 1)
(7.47)

p(Ek−1) = 0 (7.48)

p(Ek,k−1) =
2(k − 1)f

k + 2(k − 1)f
(7.49)

Again, letm0 andm1 be the number of nodes that change core number if an edge is deleted in EDk

and EDk−1 respectively. In this case, for the edge deletion from Ek,k−1, m1 = 1 because the node

whose core number changed is not connected to any other node in (k − 1)-shell.

Then, the core resilience of the centralised core skeletal graph due to one edge deletion is given by,

R(GσC) = p(Ek)r(Ek) + p(Ek,k−1r(Ek,k−1)) (7.50)

=
k(1− 2

c
(m0n(f + 1)−m2

0))

k + 2f (k − 1)
+

2f (k − 1)(1− 2
c

(fn − 1))

k + 2f (k − 1)
(7.51)

= 1−
2
(
k(m0n(f + 1)−m2

0) + 2f (k − 1)(fn − 1)
)

c(k + 2f (k − 1))
. (7.52)

106

Random Skeletal Core Graph: Again in the case of a random graph,m0 = n. So, the resilience is,

R(GC) = 1− 2(kn2f + 2f (k − 1)(fn − 1))

c(k + 2f (k − 1))
. (7.53)

Skeletal Core Subgraph: Again if the skeletal core we are dealing with is derived from some other

graph, we estimatem0 as the estimated size of the connected component that a randomly selected

node in the k-shell is a member of.

7.2.4 Core Resilience of Centralized vs Decentralized Skeletal Core Graphs

Over all the possible decentralized and centralized core skeletal graphs (assuming n, f , k are the

same2), which one has the highest core resilience?

We only need to consider the resilience for the random graphs.

R(GσD)− R(GσC) = − 2n2kf

c(k + f (k − 1))
+

2(kn2f + 2f (k − 1)(fn − 1))

c(k + 2f (k − 1))
. (7.54)

We can show that for n > 2, R(GσD) − R(GσC) < 0. That is, for a random graph, the centralized

skeletal core graph has higher resilience than the decentralized skeletal core graph.

7.2.5 Experiment

From Equation 7.54, we know that skeletal core graphs that are more centralized have higher core

resilience as compared to decentralized ones. So, make this hypothesis that for similar size graphs

of approximately similar distribution of nodes in each shell, the graphs that has skeletal that are

more centralized are more likely to have higher core resilience.

Toverify this experimentally,we take16 realworldgraphsof approximately similar numberofnodes
2n is the number of nodes, f is the distribution of nodes in the di�erent shells, k is the maximum core number.

107

Figure 7.4: Core Centralized Score (x-axis) vs Core Resilience (y-axis) for various real-world networks.

(103) and similar distribution of nodes in each k-shell (Table C.1). We calculate the centralized core

score for each of these graphs, and calculate the core resilience of these graphs (to 10% edge dele-

tion for the entire structure). Figure 7.4 shows the Core Centralized Score in the x -axis and Core

Resilience in the y -axis. Each point represents one graph. In the figure, we can see that graphs with

higher core centralized score have higher core resilience in real-world graphs.

7.3 Skeletal Core Graph and Graph Unraveling

When we consider the anchored k-core problem, the concept of skeletal core graphs can also pro-

vide insight into why it is easier to find anchors in some graphs than others. We already know that it

is easier to convert a node in (k − 1)-shell into a follower compared to one in (k − i)-shell, where

i > 1. So for this discussion we will consider only the k-core and the k − 1-shell, i.e. we assume

that all the followers will come from the k − 1-shell.

In this section,weask thequestion,what e�ect does the connectionsbetween thek -coreand (k−1)-

shell haveon thenumber of followers, givena fixednumber of anchors?Becauseweare talking about

108

why it is easier to find lots of followers in some graphs compared to others, we are not talking about

the optimal anchor selection. So we will consider multiple random anchor selection.

Theorem 7.11. All the nodes inV \ Vk forms a skeletal core sub-graph, then the increase in the size

of the anchored k -core comes purely from the anchor nodes and there will be no follower regardless

of the number of anchors allowed.

Proof. This follows directly form the concept of candidate followers. If all the nodes inV \Vk satis-

fies the condition to be in a skeletal core graph, the set of candidate followers is an empty set.

Theorem 7.12. The minimum number of edges such that set V ′ ⊂ V \ Vk can still be candidate

followers (with respect to the k -core) if the core strength of node u ∈ V ′ is, CS(u,G) = 1 + (k −

κ(k ,G)). We will refer to the subgraph induced by such nodes as Nearly Skeletal Core Sub-Graph.

Proof. This follows directly from the concept of core strength.

To study the e�ect of the connections between the k-core and (k − 1)-shell, we assume that:

1. The number of candidate nodes in in the (k − 1)-shell is the same.

2. All the candidate nodes are in the Nearly Skeletal Core Sub-Graph.

To understand the structural di�erence behind why we have a lot of followers in some graphs than

others for the same number of anchors, we need to study:

1. Ease of converting a node to a follower.

2. Size of cascade (of nodes becoming followers), due to anchors.

3. Ease of triggering a cascade; that is a node u when anchored leading to other nodes not

directly connected to u also getting into the anchored k-core.

Ease of Converting One Node to a Follower: From [54], we know that nodes with higher residual

degree become followers more easily than those with lower values. It is easy to show that in nearly

109

skeletal sub-graphs that have higher core centralized score, the residual degree will be higher com-

pared to the ones with lower core centralized score.

Size of Cascade: The size of a cascade in dictated by the number of connected components in the

nearly skeletal core sub-graph. If there is

Ease of Triggering a Cascade within a Connected Component: The ease of triggering a cascade

within an connected component is determined by the ease of converting the nodes in the compo-

nent to followers. That is, it directly relates to the core centralized score – cascades are more likely

to be triggered in components with higher k-centralized scores.

We combine these into a score that can tell us if the graph is likely to have lot of followers or not:

αR =
∑
S ′∈S

|S ′| − β
n

· CEk(S ′). (7.55)

whereS is the set of connected components in the induced sub-graph,n is thenumberof candidate

followers, and β ∈ Z+ depends on the number of anchors selected.

7.3.1 Number of Anchors and k-Centralized Score

From Equation (7.55) we know that in a connected component with higher k-centralized score, it is

easier to find anchors with large number of followers. However, we also know from Section 7.2 that

the number of edges within the shell decreases as the it gets closer to a centralized skeletal core

graph. We know that the expected number of connected components increases as the number of

edges decreases [2, 27, 83].

So, as thek-centralized scoreof a graph increases,weexpect thenumberof followers to increase ini-

tially; but a�er somepoint it will start to drop. This point ofmaximumnumber of followers depends

on the number of nodes as well as the value of k . Computing this theoretically requires estimating

the number of connected components, and currently, no such techniques exist. We thus perform

110

0.00

0.05

0.10

0.15

0.25 0.50 0.75 1.00

Core Centralized Score

F
ra
ct
io
n
of

F
ol
lo
w
er
s

(a) Core Centralized Score (x -axis) against
the Fraction of followers (y -axis).

0.025

0.050

0.075

0.100

0.125

0.25 0.50 0.75

αR

F
ra
ct
io
n
of

F
ol
lo
w
er
s

(b)αr (x -axis) against the Fraction of follow-
ers (y -axis).

Figure 7.5: Simulation results relating the fraction of followers against the Core Centralized Score (Fig-
ure 7.5a) and αR (Figure 7.5b). As expected we can see in Figure 7.5a that the fraction of followers
increases with core centralized score initially, but decreases a�er reaching some peak. In Figure 7.5b,
we can see that the fraction of followers increases with αR as expected theoretically.

an experimental analysis instead.

7.3.2 Experiments

To check the relationship betweenαr and thenumber of followers experimentally, we generate300

graphs that consist of a 10-core and a 9-shell with 100 nodes each. The αr value of each of these

graphs are calculated, and for each graph 10 nodes from the 9-shell is selected randomly as anchor

and the number of followers is calculated. This is repeated 30 times.

Figure 7.5 shows the results of the experiment. Here the x -axis is αr , the y -axis is the fraction of

followers (to the number of candidate followers), and each dot is a graph. We can clearly see that

in graphs with higher values of αr , it is easier to find good anchors.

111

7.4 Conclusion

In this chapter, we consider proposed the Skeletal Core Graph – the graph such that if any edge is

removed, the core number of at least one node will change. We show howwe can e�iciently check

if a given graph is a skeletal core graph, and to generate random skeletal core graphs of a given core

number sequence.

We also propose two types of skeletal core graphs – the decentralized and centralized skeletal core

graphs. Theoretically we show that graphs that are closer to the decentralized skeletal core graphs

have lower resilience to core structural changes.

Finally, we relate the ease of selecting anchors for the anchored k-core problemwith how close the

graph is to decentralized or centralized core graphs. We show through simulations that in graphs

that are very close to either of these categories, it is di�icult to get anchors that results in large

number of followers. However, there is some middle ground between these two were the graphs

have a lot of followers to anchors.

112

113

Appendices

Appendix A

Core Structural Change

A.1 Edge Deletion and Node Deletion

Wedefine the core resilience under two scenarios inwhich the ranking of the nodes by core number

might change: edgedeletion andnodedeletion. Note that nodedeletion canbe treated as a special

type of edgedeletion, aswhen anode is deleted, all of its edges are deleted. In this section,we show

the relationship between core resilience due to edge deletion and that due to node deletion.

Consider, a graph G = 〈V ,E 〉. The (r , p)-core resilience of G is given byRn(p)
r (G) andRe(p)

r (G)

(by definition) for node deletion and edge deletion, respectively.

Assume that deletion of p nodes results in deletion of p′ edges. It is reasonable to assume p′ > p,

since real-world networks rarely have an average degree of one. That is, Re(p′)
r (G) ≈ Rn(p)

r (G),

and in generalRe(p)
r (G) ≥ Re(p′)

r (G). So,Rn(p)
r (G) ≤ Re(p)

r (G).

Now let us consider the (r , pl , pu)-core resilience under edge deletion and node deletion.

Rn(pl ,pu)
r (G)−Re(pl ,pu)

r (G) =

∫ pu
pl

(
Rn(x)
r (G)−Re(x)

r (G)
)
dx

pu − pl

Rn(pl ,pu)
r (G) ≤ Re(pl ,pu)

r (G) (A.1)

114

A.2 Datasets

Type Network |V | |E | k∗

AS

AS_733_19971108† 3015 5196 9
AS_733_19990309† 4759 8896 12
Oregon1_010331† 10670 22002 17
Oregon1_010428† 10886 22493 17

BIO BIO_Dmela‡ 7393 25569 11
BIO_Yeast_Protein‡ 1846 2203 5

CA
CA_GrQc† 5241 14484 43
CA_HepTh† 9875 25973 31
CA_Erdos992‡ 5094 7515 7

INF
INF_OpenFlights‡ 2939 15677 28
INF_Power‡ 4941 6594 5
INF_USAir97‡ 332 126 26

P2P P2P_Gnutella08† 6301 20777 10
P2P_Gnutella09† 8114 26013 10
P2P_Gnutella25† 22687 54705 5

SOC
SOC_Hamsterster‡ 2426 16630 4
SOC_Advogato‡ 5167 39432 5
SOC_Wiki_Vote‡ 889 2914 9

TECH
TECH_Pgp‡ 10680 24316 31
TECH_Routers_rf‡ 2113 6632 15
TECH_WHOIS‡ 7476 56943 88

WEB WEB_Spam‡ 4767 37375 35
WEB_Webbase‡ 16062 25593 32

TableA.1: Real-worldnetworksused for experiments. In this table, |V | is thenumberof nodes, |E | is the
number of edges, and k∗ is the degeneracy. These datasets were downloaded from SNAP (denoted
by †), and Network Repository (denoted by ‡).

115

Appendix B

Graph Unraveling

B.1 Dataset

Network Abbr. |V | |E | kmax kmid |Ca| |Cf | |Efa| |G|
socfb-combined FC 4.0× 103 8.8× 104 115 17 1289 501 7029 13
ca-CondMat CC 2.3× 104 9.3× 104 25 4 2892 1179 3739 685
ca-HepPh CH 1.2× 104 1.1× 105 238 4 1487 634 1901 362
loc-Brightkite LB 5.8× 104 2.1× 105 52 2 3288 2365 3004 2006
socfb-Northeastern19 FN 1.4× 104 3.8× 105 43 33 4978 1246 18473 1
socfb-Syracuse56 FS 1.4× 104 5.4× 105 75 46 5522 1417 37698 2
ca-citeseer CS 2.2× 105 8.1× 104 86 3 18486 8493 20187 5991
loc-Gowalla LG 1.9× 105 9.5× 105 51 3 17890 10263 17706 7479
com-DBLP KD 3.1× 105 1.0× 106 113 3 23182 11010 25144 8240
web-Google WG 8.7× 105 4.3× 106 44 4 198014 46891 245188 20471
soc-Catster SC 1.5× 105 5.4× 106 419 21 5285 2003 8428 1054
soc-Dogster SD 4.2× 105 8.5× 106 248 12 20887 8750 26438 5339
soc-TwitterHiggs ST 4.5× 105 1.3× 107 125 17 27146 9234 40651 3493
web-Hudong WH 2.0× 106 1.4× 107 266 5 82791 40160 83886 29687
web-BaiduBaike WB 2.0× 106 1.7× 107 78 3 51659 32501 50222 27735

Table B.1: Statistics of the real-world networks used in our experiments. |V | and |E | are the number
of nodes and edges respectively; kmax and kmid are themaximumandmedian values of the coreness
of all the nodes. |Ca| and |Cf | are sizes of the candidate anchors and followers for kmid . |Efa| is the
number of edges in the subgraph induced withCf ∪ Ca, and |G| is the number of connected compo-
nents.

116

Appendix C

Skeletal Core Graph

C.1 Dataset

Network Category |V | kmax

AS_733_19971108 AS 3015 9
AS_733_19990309 AS 47509 12
Bio_Dmela BIO 7393 11
Ca_Erdos CA 5094 7
P2P_Gnutella08 P2P 6301 10
P2P_Gnutella09 P2P 8114 10

Table C.1: Data sets used for experiments in Chapter 6.

117

REFERENCES 118

References

[1] ADIGA, A., AND VULLIKANTI, A. K. S. How robust is the core of a network? In Machine Learning

and Knowledge Discovery in Databases: European Conference (2013), Springer.

[2] AIELLO, W., CHUNG, F., AND LU, L. A random graph model for massive graphs. In Proceedings

of the thirty-second annual ACM symposium on Theory of computing (2000), pp. 171–180.

[3] AL-GARADI, M. A., VARATHAN, K. D., AND RAVANA, S. D. Identification of influential spreaders in

online social networks using interaction weighted k-core decomposition method. Physica A

468 (2017).

[4] ALTAF-UL-AMINE, M., NISHIKATA, K., KORNA, T., MIYASATO, T., SHINBO, Y., ARIFUZZAMAN, M., WADA,

C., MAEDA, M., OSHIMA, T., MORI, H., ET AL. Prediction of protein functions based on k-cores

of protein-protein interaction networks and amino acid sequences. Genome Informatics 14

(2003).

[5] ALVAREZ-HAMELIN, J. I., BARRAT, A., AND VESPIGNANI, A. Large scale networks fingerprinting and

visualization using the k-core decomposition. In Advances in Neural Information Processing

Systems (2006).

[6] ALVAREZ-HAMELIN, J. I., DALL’ASTA, L., BARRAT, A., AND VESPIGNANI, A. K-core decomposition of

internet graphs: hierarchies, self-similarity andmeasurement biases. arXiv preprint cs/0511007

(2005).

[7] ALVAREZ-HAMELIN, J. I., DALL’ASTA, L., BARRAT, A., ANDVESPIGNANI, A. Large scalenetworks finger-

printing and visualization using the k-core decomposition. In Advances in Neural Information

Processing Systems (2006).

[8] ALVAREZ-HAMELIN, J. I., DALL’ASTA, L., BARRAT, A., AND VESPIGNANI, A. K-core decomposition of

Internet graphs: hierarchies, self-similarity and measurement biases. Networks and Hetero-

geneous Media 3, 2 (2008).

[9] AREEKIJSEREE, K., LAISHRAM, R., AND SOUNDARAJAN, S. Guidelines for online network crawling:

A study of data collection approaches and network properties. In Proceedings of the 10th ACM

Conference on Web Science, WebSci (2018).

[10] BATAGELJ, V., ANDZAVERSNIK,M. Ano(m) algorithm for cores decomposition of networks. Tech.

Rep. cs/0310049, Arxiv, 2003.

[11] BAUER, R., KRUG, M., AND WAGNER, D. Enumerating and generating labeled k-degenerate

graphs. In 2010 Proceedings of the Seventh Workshop on Analytic Algorithmics and Combina-

torics (ANALCO) (2010), SIAM.

[12] BAUR, M., GAERTLER, M., GÖRKE, R., KRUG, M., AND WAGNER, D. Generating graphs with prede-

fined k-core structure. In Proceedings of the European Conference of Complex Systems (2007).

[13] BAVELAS, A. Communication patterns in task-oriented groups. The Journal of the Acoustical

Society of America 22, 6 (1950).

[14] BHAWALKAR, K., KLEINBERG, J., LEWI, K., ROUGHGARDEN, T., AND SHARMA, A. Preventing unrav-

eling in social networks: the anchored k-core problem. In International Colloquium on Au-

tomata, Languages and Programming (2012).

[15] BHAWALKAR, K., KLEINBERG, J., LEWI, K., ROUGHGARDEN, T., AND SHARMA, A. Preventing unravel-

ing in social networks: the anchored k-core problem. SIAM Journal on Discrete Mathematics

29, 3 (2015).

119

[16] BLONDEL, V. D., GUILLAUME, J.-L., LAMBIOTTE, R., AND LEFEBVRE, É. The louvainmethod for com-

munity detection in large networks. Journal of Statistical Mechanics: Theory and Experiment

10 (2011).

[17] BOHLIN, L., EDLER, D., LANCICHINETTI, A., AND ROSVALL, M. Community detection and visualiza-

tion of networks with the map equation framework. InMeasuring Scholarly Impact: Methods

and Practice. Springer, 2014.

[18] BOLLOBÁS, B. Modern graph theory, vol. 184. Springer Science & Business Media, 2013.

[19] BONCHI, F., BORDINO, I., GULLO, F., ANDSTILO, G. Identifying buzzing stories via anomalous tem-

poral subgraph discovery. In 2016 IEEE/WIC/ACM International Conference onWeb Intelligence

(WI) (2016), IEEE.

[20] BONCHI, F., GULLO, F., KALTENBRUNNER, A., AND VOLKOVICH, Y. Core decomposition of uncer-

tain graphs. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (2014).

[21] BRANDES, U., AND PICH, C. Centrality estimation in large networks. International Journal of

Bifurcation and Chaos 17, 07 (2007).

[22] BURLESON-LESSER, K., MORONE, F., TOMASSONE, M. S., AND MAKSE, H. A. K-core robustness in

ecological and financial networks. Scientific reports 10, 1 (2020).

[23] CAI, Y., HUANG, F., WANG, S., ZHANG, H., AND DU, C. Research hotspots mining and visualized

analysis based on linking cluster and k-core decomposition. In Proceedings of the Interna-

tional Conference on Data Processing and Applications (2018).

[24] CARMI, S., HAVLIN, S., KIRKPATRICK, S., SHAVITT, Y., AND SHIR, E. A model of internet topology

using k-shell decomposition. Proceedings of the National Academy of Sciences 104, 27 (2007).

[25] CHENG, J., KE, Y., CHU, S., AND ÖZSU, M. T. E�icient core decomposition in massive networks.

120

In IEEE International Conference on Data Engineering (2011).

[26] CHITNIS, R. H., FOMIN, F. V., AND GOLOVACH, P. A. Preventing unraveling in social networks gets

harder. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (2013).

[27] CHUNG, F., AND LU, L. Connected components in random graphs with given expected degree

sequences. Annals of combinatorics 6, 2 (2002).

[28] CLAUSET, A., NEWMAN, M. E. J., AND MOORE, C. Finding community structure in very large net-

works. Phys. Rev. E 70 (Dec 2004).

[29] COHEN, J. Trusses: Cohesive subgraphs for social network analysis.

[30] COHEN, J. Trusses: Cohesive subgraphs for social network analysis. National Security Agency

Technical Report 16 (2008).

[31] COJA-OGHLAN, A., FEIGE, U., KRIVELEVICH, M., AND REICHMAN, D. Contagious sets in expanders.

In Proceedings of the twenty-sixth annual ACM-SIAM Symposium on Discrete Algorithms (2014),

SIAM.

[32] DOROGOVTSEV, S. N., GOLTSEV, A. V., AND MENDES, J. F. F. K-core organization of complex net-

works. Physical Review Letters 96, 4 (2006).

[33] ELSHARKAWY, S., HASSAN, G., NABHAN, T., AND ROUSHDY, M. Studying the dissemination of the

k-core influence in twitter cascades. In IFIP International Conference on Artificial Intelligence

Applications and Innovations (2018), Springer.

[34] ERDOS, P., ANDHAJNAL, A. Onchromatic number of graphs and set-systems. ActaMathematica

Hungarica 17 (1966).

[35] ESFANDIARI, H., LATTANZI, S., AND MIRROKNI, V. S. Parallel and streaming algorithms for k-core

decomposition. In Proceedings of the 35th International Conference on Machine Learning

(2018).

121

[36] FEIGE, U., KRIVELEVICH, M., REICHMAN, D., ET AL. Contagious sets in random graphs. The Annals

of Applied Probability 27, 5 (2017).

[37] FREEMAN, L. C. A set of measures of centrality based on betweenness. Sociometry (1977).

[38] GARCIA, D., MAVRODIEV, P., AND SCHWEITZER, F. Social resilience in online communities: The

autopsy of friendster. In Conference on Online Social Networks (2013).

[39] GIATSIDIS, C., THILIKOS, D. M., AND VAZIRGIANNIS, M. Evaluating cooperation in communities

with the k-core structure. In International Conference on Advances in Social Networks Analysis

and Mining (2011).

[40] GIATSIDIS, C., THILIKOS, D. M., AND VAZIRGIANNIS, M. D-cores: measuring collaboration of di-

rected graphs based on degeneracy. Knowledge and Information Systems 35, 2 (2013).

[41] GIRVAN, M., AND NEWMAN, M. E. Community structure in social and biological networks. Pro-

ceedings of the national academy of sciences 99, 12 (2002).

[42] GOLDSCHMIDT, O., NEHME, D., AND YU, G. Note: On the set-union knapsack problem. Naval

Research Logistics (NRL) 41, 6 (1994).

[43] GONG, K., ANDKANG, L. Anewk-shell decompositionmethod for identifying influential spread-

ers of epidemics on community networks. Journal of Systems Science and Information 6, 4

(2018).

[44] GOVINDAN, P., WANG, C., XU, C., DUAN, H., AND SOUNDARAJAN, S. The k-peak decomposition:

Mapping the global structure of graphs. In Proceedings of the 26th International Conference

on World Wide Web (2017).

[45] GUGGIOLA, A., AND SEMERJIAN, G. Minimal contagious sets in random regular graphs. Journal

of Statistical Physics 158, 2 (2015).

[46] JUN, W., BARAHONA, M., YUE-JIN, T., AND HONG-ZHONG, D. Natural connectivity of complex

122

networks. Chinese physics letters 27, 7 (2010).

[47] KARRER, B., ANDNEWMAN,M. E. Stochastic blockmodels and community structure in networks.

Physical Review E 83 (Jan 2011).

[48] KERMACK, W. O., AND MCKENDRICK, A. G. A contribution to the mathematical theory of epi-

demics. Proceedings of the royal society of london. Series A, Containing papers of amathemat-

ical and physical character 115, 772 (1927).

[49] KHAOUID, W., BARSKY, M., VENKATESH, S., AND THOMO, A. K-core decomposition of large net-

works on a single PC. Proceedings of the VLDB Endowment 9, 1 (2015).

[50] KITSAK, M., GALLOS, L. K., HAVLIN, S., LILJEROS, F., MUCHNIK, L., STANLEY, H. E., AND MAKSE, H. A.

Identification of influential spreaders in complex networks. Nature physics 6, 11 (2010).

[51] KRAMER, S. Anomaly detection in extremist web forums using a dynamical systems approach.

In ACM SIGKDDWorkshop on Intelligence and Security Informatics (2010), pp. 1–10.

[52] LAISHRAM, R., AREEKIJSEREE, K., AND SOUNDARAJAN, S. Predicted max degree sampling: Sam-

pling in directed networks tomaximize node coverage through crawling. In Proceedings IEEE

INFOCOMWorkshops (2017), no. 2017.

[53] LAISHRAM, R., SARIYÜCE, A. E., ELIASSI-RAD, T., PINAR, A., AND SOUNDARAJAN, S. Measuring and

improving the core resilience of networks. In Proceedings of the 2018 World Wide Web Confer-

ence (2018).

[54] LAISHRAM, R., SARIYÜCE, A. E., ELIASSI-RAD, T., PINAR, A., AND SOUNDARAJAN, S. Residual core

maximization: An e�icient algorithm formaximizing the size of the k-core. In SIAMDataMining

(2020).

[55] LAISHRAM, R., WENDT, J. D., AND SOUNDARAJAN, S. Crawling the community structure of multi-

plex networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI (2019).

123

[56] LANCICHINETTI, A., AND FORTUNATO, S. Limits of modularity maximization in community de-

tection. Phys. Rev. E 84 (Dec 2011), 066122.

[57] LEON-SUEMATSU, Y. I., INUI, K., KUROHASHI, S., AND KIDAWARA, Y. Web spam detection by explor-

ing densely connected subgraphs. In 2011 IEEE/WIC/ACM International Conferences on Web

Intelligence and Intelligent Agent Technology (2011), vol. 1, IEEE.

[58] LI, R., YU, J. X., AND MAO, R. E�icient core maintenance in large dynamic graphs. IEEE Transac-

tions on Knowledge and Data Engineering 26, 10 (2014).

[59] LIU, Y., TANG,M., ZHOU, T., ANDDO, Y. Core-like groups result in invalidation of identifying super-

spreader by k-shell decomposition. Scientific reports 5 (2015).

[60] LONG, X., YIN, W., AN, L., NI, H., HUANG, L., LUO, Q., AND CHEN, Y. Churn analysis of online social

network users using data mining techniques. In Proceedings of the international MultiConfer-

ence of Engineers and Conputer Scientists (2012), vol. 1.

[61] LUO, S.-L., GONG, K., ANDKANG, L. Identifying influential spreaders of epidemicsoncommunity

networks. arXiv preprint arXiv:1601.07700 (2016).

[62] MAIYA, A. S., AND BERGER-WOLF, T. Y. Online sampling of high centrality individuals in social

networks. In Advances in Knowledge Discovery and Data Mining, 14th Pacific-Asia Conference.

Proceedings. Part I (2010).

[63] MAIYA, A. S., AND BERGER-WOLF, T. Y. Sampling community structure. In Proceedings of the 19th

International Conference on World Wide Web, WWW (2010).

[64] MAIYA, A. S., AND BERGER-WOLF, T. Y. Benefits of bias: Towards better characterization of net-

work sampling. In Proceedings of the 17th ACMSIGKDD international conference on Knowledge

discovery and data mining (2011).

[65] MANTEGNA, R. N. Hierarchical structure in financial markets. The European Physical Journal

124

B-Condensed Matter and Complex Systems 11, 1 (1999).

[66] MATULA, D., AND BECK, L. Smallest-last ordering and clustering and graph coloring algorithms.

Journal of the ACM 30, 3 (1983).

[67] MATULA, D. W. Amin-max theorem for graphs with application to graph coloring. SIAM Review

10, 4 (1968).

[68] MEDYA, S., MA, T., SILVA, A., AND SINGH, A. K-core minimization: A game theoretic approach.

arXiv preprint arXiv:1901.02166 (2019).

[69] MORIANO, P., IYER, S., AND CAMP, L. J. Characterization of internet routing anomalies through

graph mining. Tech. rep., 2017.

[70] MORONE, F., BURLESON-LESSER, K., VINUTHA, H., SASTRY, S., AND MAKSE, H. A. The jamming

transition is a k-core percolation transition. Physica A 516 (2019).

[71] MORONE, F., DEL FERRARO, G., AND MAKSE, H. A. The k-core as a predictor of structural collapse

in mutualistic ecosystems. Nature Physics 15, 1 (2019).

[72] NEWMAN, M. E. Modularity and community structure in networks. Proceedings of the National

Academy of Sciences 103, 23 (2006).

[73] NEWMAN, M. E. The mathematics of networks. The new palgrave encyclopedia of economics

2, 2008 (2008).

[74] NEWMAN,M. E., ANDGIRVAN,M. Finding andevaluating community structure in networks. Phys.

Rev. E 69 (Feb 2004).

[75] NGUYEN, A., AND HONG, S.-H. K-core based multi-level graph visualization for scale-free net-

works. In 2017 IEEE Pacific Visualization Symposium (PacificVis) (2017), IEEE.

[76] O’BRIEN, M. P., AND SULLIVAN, B. D. Locally estimating core numbers. In IEEE International

Conference on Data Mining (2014).

125

[77] OVELGÖNNE, M., AND GEYER-SCHULZ, A. An ensemble learning strategy for graph clustering. In

DIMACS Workshop: Graph Partitioning and Graph Clustering (2012).

[78] PEIXOTO, T. P. Hierarchical block structures and high-resolution model selection in large net-

works. Phys. Rev. X 4 (Mar 2014).

[79] PENG, C., KOLDA, T. G., AND PINAR, A. Accelerating community detection by using k-core sub-

graphs. arXiv preprint arXiv:1403.2226 (2014).

[80] PETROV, M. Identification of unusual wallets on ethereum platform.

[81] REICHMAN, D. New bounds for contagious sets. Discrete Mathematics 312, 10 (2012).

[82] REN, B., DENG, Y. H., HE, P., AND TSANG, K.-T. The comparison of fourmethods in finding influen-

tial spreader in social network. In 2017 13th International Conference on Natural Computation,

Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (2017), IEEE.

[83] ROSS, S. M. A random graph. Journal of applied probability 18, 1 (1981).

[84] ROSVALL, M., AND BERGSTROM, C. T. Maps of random walks on complex networks reveal com-

munity structure. Proceedings of the National Academy of Sciences 105, 4 (2008).

[85] SARıYÜCE, A. E., GEDIK, B., JACQUES-SILVA, G., WU, K.-L., AND ÇATALYÜREK, Ü. V. Streaming algo-

rithms for k-core decomposition. Proc. VLDB Endow. 6, 6 (Apr. 2013), 433–444.

[86] SARIYUCE, A. E., SESHADHRI, C., PINAR, A., AND CATALYUREK, U. V. Finding the hierarchy of dense

subgraphs using nucleus decompositions. InWWW (2015).

[87] SCHMIDT, C., PFISTER, H. D., AND ZDEBOROVÁ, L. Minimal sets to destroy the k-core in random

networks. Physical Review E 99, 2 (2019).

[88] SEIDMAN, S. B. Network structure and minimum degree. Social Networks 5, 3 (1983).

[89] SHIN, K., ELIASSI-RAD, T., ANDFALOUTSOS, C. Corescope: Graphminingusing k-core analysisâĂŤ-

126

patterns, anomalies and algorithms. In IEEE nternational Conference on Data Mining (2016),

IEEE, pp. 469–478.

[90] TALEBI, M. Improving genetic algorithmoperators for analyzing anomalous behavior of online

customers. International Journal of New Technology and Research 1, 6 (2015).

[91] TUĞRUL, M., AND KABAKÇıOĞLU, A. Anomalies in the transcriptional regulatory network of the

yeast saccharomyces cerevisiae. Journal of theoretical biology 263, 3 (2010).

[92] VAZIRANI, V. V. Approximation algorithms. Springer Science & Business Media, 2013.

[93] WEJNERT, C., AND HECKATHORN, D. D. Web-based network sampling: e�iciency and e�icacy of

respondent-driven sampling for online research. SociologicalMethods &Research 37, 1 (2008).

[94] WEN, D., QIN, L., ZHANG, Y., LIN, X., AND YU, J. I/o e�icient core graph decomposition at web

scale. In IEEE International Conference on Data Engineering (2016).

[95] WENDT, J. D., WELLS, R., FIELD, R. V., AND SOUNDARAJAN, S. On data collection, graph construc-

tion, and sampling in twitter. In IEEE/ACM International Conference on Advances in Social Net-

works Analysis and Mining (2016), IEEE.

[96] YANG, X., HUANG, D., AND ZHANG, Z.-K. Neighborhood coreness algorithm for identifying a set

of influential spreaders in complex networks. TIIS 11, 6 (2017).

[97] ZACHARY, W. W. An information flowmodel for conflict and fission in small groups. Journal of

anthropological research 33, 4 (1977).

[98] ZHANG, F., ZHANG, W., ZHANG, Y., QIN, L., AND LIN, X. Olak: an e�icient algorithm to prevent

unraveling in social networks. Proceedings of the VLDB Endowment 10, 6 (2017).

[99] ZHANG, F., ZHANG, Y., QIN, L., ZHANG, W., AND LIN, X. Finding critical users for social network

engagement: The collapsed k-core problem. In Proceedings of the Thirty-First AAAI Conference

on Artificial Intelligence (2017).

127

[100] ZHANG, Y., AND PARTHASARATHY, S. Extracting analyzing and visualizing triangle k-core motifs

within networks. In IEEE International Conference on Data Engineering (2012), IEEE.

[101] ZHANG, Y., YU, J. X., ZHANG, Y., AND QIN, L. A fast order-based approach for core maintenance.

In IEEE International Conference on Data Engineering (2017).

[102] ZHAO, F., AND TUNG, A. K. Large scale cohesive subgraphs discovery for social network visual

analysis. Proceedings of the VLDB Endowment 6, 2 (2012).

[103] ZHOU, Z., ZHANG, F., LIN, X., ZHANG, W., AND CHEN, C. K-core maximization: An edge addition

approach. In AAAI (2019).

[104] ZHU,W., CHEN, C., WANG, X., AND LIN, X. K-coreminimization: An edgemanipulation approach.

In Proceedings of the 27th ACM International Conference on Information and Knowledge Man-

agement (2018).

128

Vita

Ricky Laishram

Education

1. Master of Science in Computer Science.

Syracuse University, Syracuse, NY.

Master’s Thesis: Link Prediction inDynamicWeightedandDirected Social Network using Super-

vised Learning.

Thesis Advisors: Dr Kishan Mehrotra and Dr Chilukuri Mohan.

Graduation: May, 2015.

2. Bachelor of Engineering in Electronics and Communication Engineering.

Birla Institute of Technology, Mesra, India.

Graduation: December, 2010.

Experience

1. Research Assistant. Syracuse University. (2017-Present).

2. Teaching Assistant. Syracuse University. (2015-2017).

3. Web Developer. ITS Syracuse University. (2013-2015).

4. Technical Co-Founder. Digitizor Web & Media. (2011-2013).

129

Publications

1. R. Laishram, A.E. Sarıyüce, T. Eliassi-Rad, A. Pinar, S. Soundarajan. "Residual Core Maximiza-

tion: An E�icient Algorithm for Maximizing the Size of the k-Core." SDM. 2020.

2. R. Laishram, J.D. Wendt, S. Soundarajan. "Sampling the Community Structure of Multiplex

Networks." AAAI. 2019.

3. R. Laishram, A.E. Sarıyüce, T. Eliassi-Rad, A. Pinar, S Soundarajan. "Measuring and Improving

the Core Resilience of Networks." WWW. 2018.

4. K. Areekijseree, R. Laishram, S. Soundarajan. "Guidelines for Online Network Crawling: A

Study of Data Collection Approaches and Network Properties." WebSci. 2018.

5. R. Laishram, K. Areekijseree, S. Soundarajan. ”Predicted Max Degree Sampling: Sampling in

directed networks to maximize node coverage through crawling.” INFOCOM. 2017.

6. K. Areekijseree,R.Laishram, S. Soundarajan. ”Max-nodesampling: Anexpansion-densification

algorithm for data collection.” Big Data. 2016.

7. R. Laishram, K. Areekijseree, S. Soundarajan. ”Predicted max degree sampling: Sampling in

directed networks to maximize node coverage through crawling”. Big Data. 2016.

8. R. Laishram, K. Mehrotra, C.K. Mohan. ”Link Prediction in Social Networks with Edge Aging”.

ICTAI. 2016.

9. R. Laishram, V.V. Phoha. "Curie: A method for protecting SVM Classifier from Poisoning At-

tack." 2016.

Extended Abstracts/Posters

1. X. Wang, R. Laishram, J.B. Brask, C. Marcelo, "Understanding Music with Higher Order Net-

works." SFI CSSS Proceedings. 2018.

130

2. S.J. Berkemer, S.L. Cheong, J. Edgerton, M. Kogan, R. Laishram, A.R. Pacheco, A. Shannon,

M.D. Sweitzer, X. Wang, "A Study on Public Transport Mobility Flows in Singapore." SFI CSSS

Proceedings. 2018.

3. S.L. Cheong,R.Laishram, S.Ojanpera, A. Shannon, X.Wang, "Industrial EconomicandSpatial

Clustering in Singapore." SFI CSSS Proceedings. 2018.

4. R.Laishram, A.E. Sarıyüce, T. Eliassi-Rad, A. Pinar, S. Soundarajan. "ImprovingCoreResilience

of Networks under Random Edge Deletion." CompleNet. 2018.

5. R. Laishram, S. Soundarajan. "Evaluation of Community Similarity based onHierarchical Dis-

tance." NERCCS. 2018.

Under Review

1. R. Laishram, J.D.Wendt, S. Soundarajan. "MCS+: An E�icient Algorithm for Crawling theCom-

munity Structure in Multiplex Networks".

2. X. Wang,R. Laishram. "Representing andUnderstandingMusic with Higher-Order Networks".

3. R. Laishram, J.D. Wendt, S. Soundarajan. "NetProtect: Network Perturbation to Hide Target

Nodes".

4. R. Laishram, A.E. Sarıyüce, T. Eliassi-Rad, A. Pinar, S. Soundarajan. "The Resilience of k-Core

Structure to Missing Data".

Invited Talks/Presentations

1. Chesapeake Large-Scale Analytics Conference (CLSAC). "Sampling the Community Structure

of Multiplex Networks". 2019.

2. Graph Exploitation Symposium (GraphEx). "Sampling the Community Structure of Multiplex

Networks". 2019.

131

3. SIAM Conference on Computational Science and Engineering (SIAM CSE). "Measuring and

Improving the Core Resilience of Networks". 2019.

Miscellaneous

1. Education: Complex Systems Summer School, Santa Fe Institute (2018).

2. Reviewer: TKDE (2018,2019); CIKM (2019), IEEE Access (2019), NetSciX (2018).

132

	The Resilience of k-Cores in Graphs
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Graphs
	Centrality Measures
	Dense Substructures
	Community
	k-Core

	Related Works
	k-Core Decomposition
	Applications of k-Core
	Changes to k-Core Structure
	Core Structural Change
	Core Minimization
	Graph Unraveling

	Core Structural Changes
	Core Resilience
	Motivating Applications
	Anomaly Detection
	Community Detection

	Characterizing Core Resilience with Node Level Properties
	Notations
	Core Strength
	Core Influence
	Core Influence-Strength
	Experiments

	Improving the Core Resilience of a Network
	Generating Candidate Edges
	Assigning Edge Priority
	Experiments

	Conclusion

	Core Minimization
	Motivating Application
	Characterizing the Resilience to Collapsed k-Core
	Core Instability
	Experiments

	Anchoring Nodes to Minimize Collapse
	Shortcoming of Naive Method
	Maximizing the Collapse Resilience of the k-Core
	Experiments

	Conclusion

	Graph Unraveling
	Motivating Example
	Anchored k-Core Problem
	Problem Definition
	Need for Look-Ahead Ability
	Method: Residual Core Maximization
	Candidate Followers and Anchors
	Residual Degree
	Residual Core
	Bounds on the Number of Anchors
	Residual Anchor Selection
	Anchor Score based Anchors Selection
	Residual Core Maximization

	Running Time of RCM
	Experiments
	Comparison Against Baseline Algorithms
	Comparison with Optimal Solution
	Experimental Analysis of RCM

	Conclusions

	Skeletal Core Graph
	Skeletal Core Graph
	Categorization of Skeletal Core Graphs
	Skeletal Core Subgraph of a Graph
	Generative Model for Random Skeletal Core Graph

	Skeletal Core Graph and Core Structural Change
	Core Resilience of Skeletal Core Graph
	Core Resilience of Decentralized Core Skeletal Graphs
	Core Resilience of Centralized Core Skeletal Graph
	Core Resilience of Centralized vs Decentralized Skeletal Core Graphs
	Experiment

	Skeletal Core Graph and Graph Unraveling
	Number of Anchors and k-Centralized Score
	Experiments

	Conclusion

	Appendices
	Core Structural Change
	Edge Deletion and Node Deletion
	Datasets

	Graph Unraveling
	Dataset

	Skeletal Core Graph
	Dataset

	References
	Vita

