
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

January 2015

Link Prediction in Dynamic Weighted and Directed Social Network Link Prediction in Dynamic Weighted and Directed Social Network

using Supervised Learning using Supervised Learning

Ricky Laishram
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Laishram, Ricky, "Link Prediction in Dynamic Weighted and Directed Social Network using Supervised
Learning" (2015). Dissertations - ALL. 355.
https://surface.syr.edu/etd/355

This Thesis is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/355?utm_source=surface.syr.edu%2Fetd%2F355&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

Link Prediction is an area of great interest in social network analysis. Previous

works in the area of link prediction have only focused on networks where the links

once created cannot be removed. In many real world social networks, the links should

be assigned strengths; for example, the strength of a link should decrease over time, if

there are no interactions between the two nodes for a long time and increase if the two

nodes interact often. In this thesis we modify existing methods of link prediction to ap-

ply to weighted and directed networks. The features, developed in previous works for

unweighted and undirected networks, are extended to apply to networks whose links

have weight and direction, and algorithms are developed to calculate them efficiently.

These network features are used to train an SVM classifier to predict which nodes

will be connected by a link and which links will be broken in the future. The results

obtained using Twitter @-mention network demonstrate that the method developed in

this thesis is very effective.

Link Prediction in Dynamic Weighted and

Directed Social Network using Supervised

Learning

by

Ricky Laishram

Submitted in partial fulfillment of the requirements for the degree of Master of

Science in Computer Science

Syracuse University

August 2015

Copyright

Copyright c© Ricky Laishram, 2015

Acknowledgments

I am very grateful to Dr. Chilukuri K. Mohan who introduced me to the area of social network

analysis and encouraged me to work on the current research. Without his help and encouragements,

I might not have even considered doing this research.

I am also extremely grateful to Dr. Kishan Mehrotra for guiding me in my research and providing

valuable feedback while writing this thesis. Without his guidance and help this thesis would not

have been possible.

iv

Contents

1 Introduction 1

2 Previous Works 3

2.1 Unsupervised Link Prediction . 3

2.2 Supervised Link Prediction . 5

2.3 Supervised Link Prediction in Sparse Network . 7

3 Network Model with Weighted and Directed Links 8

4 Modification of Feature Scores for Weighted and Directed Network 10

4.1 Common Neighbor Score . 10

4.2 Preferential Attachment Score . 11

4.3 Adamic-Adar Index . 12

4.4 Katz Score . 14

4.5 Shortest Path Score . 16

4.6 Rooted PageRank . 17

5 Incremental Method for Calculating Feature Scores 19

5.1 Common Neighbor Score . 19

5.1.1 Effect of decay of link weight . 20

v

5.1.2 Effect of removal of link . 20

5.1.3 Effect of interaction between nodes . 22

5.2 Preferential Attachment Score . 23

5.2.1 Effect of decay of link weight . 23

5.2.2 Effect of removal of link . 24

5.2.3 Effect of interaction between nodes . 25

5.3 Adamic Adar Index . 27

5.3.1 Effect of decay of link weight . 27

5.3.2 Effect of removal of links . 29

5.3.3 Effect of interaction between nodes . 30

5.4 Katz Score . 33

5.4.1 Effect of decay of link weight . 33

5.4.2 Effect of removal of link . 33

5.4.3 Effect of interaction between nodes . 36

5.5 Shortest Path Score . 37

5.5.1 Effect of decay of link weight . 38

5.5.2 Effect of interaction between nodes . 38

5.5.3 Effect of removal of link . 39

5.6 Rooted PageRank . 40

vi

5.6.1 Effect of decay of link weight . 41

5.6.2 Effect of interactions between nodes and removal of links 41

6 Link Prediction as a Classification Problem 42

6.1 Link Prediction Method . 42

6.2 Handling Class Imbalance . 43

7 Data 45

7.1 Data Source . 45

7.2 Data Preparation . 45

8 Link Prediction Results 47

9 Analysis 54

10 Conclusion 54

Appendices 55

A Algorithms for Calculating Feature Scores 55

A.1 Common Neighbor Score . 55

A.2 Adamic-Adar Index . 55

A.3 Preferential Attachment Score . 55

vii

A.4 Katz Score . 59

A.5 Shortest Path Score . 61

A.6 Rooted PageRank . 61

B Run Time Analysis 63

B.1 Common Neighbor Score . 63

B.2 Adamic-Adar Index . 63

B.3 Preferential Attachment Score . 64

B.4 Katz Score . 64

B.5 Shortest Path Score . 65

B.6 Rooted PageRank . 65

References 67

viii

1 Introduction

A social network is a structure containing a set of actors and relationships; actors are represented as

nodes, and relationships are represented as edges. For example, the edges may represent commu-

nications between the nodes, spread of diseases from one node to another, etc. Two basic changes

can happen in a social network - addition or removal of nodes, and addition or removal of edges.

In this thesis, I propose a method to predict addition or removal of edges. This particular

problem is called the Link Prediction Problem in Social Network. David Liben-Nowell and Jon

Kleinsberg define the Link Prediction Problem as follows: "to what extent can the evolution of a

social network be modeled using features intrinsic to the network itself?"[2].

In all the previous works addressing this problem, the network model is such that a link once

created is not destroyed. However, in many real world networks, the links are not permanent. For

example in a Twitter @-mention network, if two users have not communicated for a long time, the

link between them should be removed. To address this problem, I consider the following:

1. A network model where the link weights change with time. In this model each new interac-

tion between nodes strengthens the link between them, whereas lack of interaction decreases

the strength of the link. An appropriate threshold is set such that if the weight of a link is

below the threshold, the link is removed.

2. Link prediction in directed and weighted networks. I modify features, used in undirected

and unweighted networks, to apply to weighted and directed networks.

3. Efficient algorithms to incrementally update the network feature scores are also developed.

4. The problem of class imbalance is handled by using the ensemble SVM method.

This thesis is organized as follows:

1. The problem of edge deletion is addressed in Chapter 3.

1

2. Feature modifications to address the weighted directed networks is addressed in Chapter 4.

3. Efficient algorithms to compute the feature scores is described in Chapter 5.

4. In Chapter 6, link prediction problem is formulated as a classification problem, and solved

using SVM where class imbalance is also addressed.

In the next chapter, I examine the previous works done by other researchers and examine the

shortcomings of the existing methods.

2

2 Previous Works

Many researchers have worked on the problem of link prediction in social networks in unsupervised

as well as supervised context. In this chapter we look at some of the previous works done in the

area of link prediction and their shortcomings.

2.1 Unsupervised Link Prediction

Liben-Nowell et al. [1] examined if links in a network can be predicted by considering only

features intrinsic to the network. They observed a collaboration network at time [t0, t1, t2, . . .T]. In

this network the set of nodes V remains fixed but edges are added over time. The network over

time are < V,E0 >, < V,E1 >, < V,E2 > . . .< V,ET > such that E0 ⊆ E1 ⊆ E2 . . . ⊆ ET . Out of

these networks, they considered two networks G1 =< V,Et> and G2 =< V,ET −Et > for time t

such that 0 < t < T , and let N = |ET −Et |. In other words, G2 contains only the links that were

formed after time t. They used G1 as the training network and G2 is assumed to be unknown. Their

aim was to use G1 to predict the edges in G2.

They considered the following intrinsic features: common neighbors, preferential attachment

count, Adamic-Adar Index, Katz Score, Hitting Time, Rooted PageRank and Commute Time for

this evaluation.

Their method is described as below:

1. For all possible node pairs u and v such that u,v ∈V ∧ (u,v) /∈ E1, the feature score si(u,v) is

calculated for all the features, i = 1,2,3, . . .7. Let Si = {si(u,v) : ∀(u,v) ∈V ∧ (u,v) /∈ E1}.

2. For i = 1,2, . . .7, the elements of Si are sorted in descending order of magnitude and the top

N pairs of nodes (u,v) with highest si(u,v) are selected. Let S∗i represent this list of nodes.

A link is predicted between (u,v) for all (u,v) ∈ S∗i .

3

The performance Pi for a feature i is considered as the number of correctly predicted links. A

link (u,v) in S∗i in said to be correctly predicted if it is also in the set ET −Et .

Pi = |{(u,v) : (u,v) ∈ S∗i ∧ (u,v) ∈ (ET −Et)}| (1)

Liben-Nowell et al. compared the performances Pi against a random prediction. To generate

randomly predicted set of N links in ET −Et , a set of N node pairs (u,v) is selected such that

u,v ∈ V ∧ (u,v) /∈ Et . Let us denote this list by R, and Q be the number of correctly identified

edges.

Q = |{(u,v) : (u,v) ∈ R∧ (u,v) ∈ (ET −Et)}| (2)

Liben-Nowell et al. applied their method to the collaboration network obtained from the ArXiv

dataset. In this network, |V |= 1253 and |ET −Et |= 1150.

Feature Pi/Q
Adamic-Adar 54.8
Katz Score 54.8
Common Neighbors 41.1
Hitting Time 23.8
Rooted PageRank 42.3
Commute Time 15.5

Table 1: Pi/Q for different features

Liben-Nowell et al. found that the ratio Pi/Q is in the range [15,55] (Table 1) for all the

features. This demonstrates that the performance of the predictions based on network intrinsic

features is significantly higher than a random predictor. From this observation, they concluded that

a network contains intrinsic information to predict links.

The method used by Liben-Nowell et al. has two drawbacks that make it difficult to apply in

real world networks.

1. In real world networks, we do not know the number of links that will be created in the future.

4

So calculation of N will not be possible.

2. Even though their method outperforms random prediction by a huge margin, the ratio of

correctly predicted links to the actual number of new links (Pi/N) is very low. In their work,

Adamic-Adar Index and Katz Score were the best performing features, but the associated

predictions are only 8% correct i.e. Pi/N ≤ 0.08. The Pi/N ratios for all the features are

shown in Table 2.

Feature Pi/N
Adamic-Adar 0.080
Katz Score 0.080
Common Neighbors 0.060
Hitting Time 0.034
Jaccard’s Coefficient 0.062
Rooted PageRank 0.060

Table 2: Pi/N for different features

2.2 Supervised Link Prediction

Al Hasan et al. [2] explored the use of supervised learning methods (Decision Tree, Naive Bayes,

SVM, Multi-Layer Perceptron) to predict links in the co-authorship networks obtained from the

BIOBASE and DBLP datasets.

As in Section 2.1, Al Hasan et al. considered two networks G1 and G2. The network G1 is the

training network and G2 is the network for which links are to be predicted. They transform the link

prediction problem into a two-class classification problem by assigning class labels to all pairs of

nodes as:

class(u,v|Gt) =

1, if (u,v) ∈ Et (positive class)

0, if (u,v) /∈ Et (negative class)
(3)

Using G1, they calculate the feature scores associated with each pair (u,v). Let F1 denote the

5

feature scores for all n-features from G1,

F1 = {(s1(u,v|G1),s2(u,v|G1), ...,sn(u,v|G1)) : u,v ∈V} (4)

Here si(u,v|Gt) is a feature score between nodes u and v in network Gt for a feature i. They

considered features that are both intrinsic to the network (sum of neighbors count, sum of sec-

ondary neighbors count, clustering index, shortest path) and extrinsic to the network (based on

papers published - sum of keywords, sum of classification code, sum of papers, keyword match

count).

Let C1 be the set of all the class labels for network G1. Then (F1,C1) forms the training data.

Likewise testing data is calculated from G2 for all pairs of nodes that do not have a link between

them in G1, i.e.

F2 = {(s1(u,v|G2),s2(u,v|G2), ...,sn(u,v|G2)) : u,v ∈V ∧ (u,v) /∈ Et} (5)

The classifiers are trained using the training data, and used to predict the class labels for the

testing data F2.

Al Hasan et al. achieved very good results with their method. All the supervised learning

algorithms they used have accuracy of more than 85%. However, there are some shortcomings

with their method.

1. In a real world network, we do not know the network G2. So calculation of the testing data

F2 (in equation 5) will not be possible.

2. Their method uses network extrinsic features, e.g., derived from similarity of the papers

published. In other applications, it may not be possible to use extrinsic features.

6

2.3 Supervised Link Prediction in Sparse Network

The network that Al Hasan et al. [2] used in their work has positive and negative class of approxi-

mately equal size. However, many real world networks are sparse - the size of the positive class is

much smaller compared to that that of the negative class. Lichtenwaltert et al. [3] improved upon

the works of Al Hasan et al. as follows:

1. In their method, they do not use any extrinsic features. They used only network intrinsic

features: common neighbors count, Katz Score, Jaccard’s Coefficient, PropFlow and Prefer-

ential Attachment.

2. They overcame the problem of class imbalance by oversampling from the positive class

and undersampling from the negative class to generate the training data. They used SVM

to classify the test data into positive or negative class, and compared the results to those

obtained using unsupervised method (Section 2.1).

Lichtenwaltert et al. [3] obtained very good results with their method (AUC > 70%) on sparse

networks. This demonstrates two important ideas:

1. The network extrinsic features, like the ones used by Al Hasan et al. [2] are not always

necessary in a supervised learning method of link prediction.

2. Supervised link prediction performs very well in sparse networks after adjusting for class

imbalance.

7

3 Network Model with Weighted and Directed Links

In this chapter, we describe a network model where the links are assigned weights, representing

its strength, and direction. Consider a network which has a link between nodes u and v at time t.

If there is an interaction between u and v at time (t + 1), the strength of the link between u and v

should increase. If there is an interaction between two nodes, the weight of the link between them

is increased. Otherwise, the weight of the link between them is decreased by a factor δ . A weight

threshold θ is defined such that a link is considered broken if its weight is lower than θ .

For example, in a Twitter @-mention network, an interaction is a tweet sent by one node to

another. Each link in the network has a strength associated with it. Depending upon the strength

of a link, from node u to v, the link could be destroyed assuming there are no more interactions

between u and v [4, 5] for a long time.

Suppose that Gt =<V,Et > is the network at time t. If It,t+1 is the set of node pairs that interact

with each other in the time interval [t, t + 1], the set of links at time t + 1 is generated using the

method described below.

1. A set of links is generated:

Tt+1 = Et ∪{(u,v) : (u,v) ∈ It,t+1∧ (u,v) /∈ Et} (6)

2. The weight of each link in Tt+1 is calculated:

w(u,v|t +1) =

δ ·w(u,v|t)+1, if (u,v) ∈ It,t+1

δ ·w(u,v|t), if (u,v) /∈ It,t+1

(7)

3. The links with weight less than θ are removed from the set Tt+1. The resulting set Et+1 is

8

the set of links in the network at time (t +1).

Et+1 = Tt+1−{(u,v) : (u,v) ∈ Tt+1∧w(u,v|t +1)≤ θ} (8)

The value of θ and δ depend on the network, and 0 < θ < 1 and 0≤ δ ≤ 1.

In the next chapter, we will describe how the existing feature scores are modified to apply to

the network described in this chapter.

9

4 Modification of Feature Scores for Weighted and Directed

Network

As mentioned in Chapter 2, previous works on link prediction have been performed on unweighted

and undirected networks. So, most of the feature scores are independent of the link weight and

direction. In this chapter we will extend the existing feature scores to apply to weighted and

directed networks.

Notations:

1. In an undirected network, the set of neighbors of a node u is represented by Γ(u), and w(u,v)

is the weight of the link from u to v.

2. In a directed network, a node u has two types of neighbors - neighbors with links that are

directed away from u, represented by Γo(u), and neighbors with links that are directed to u,

represented by Γi(u).

3. The set ρ(u,v|l) denotes the set of paths of length l from node u to v,

In the following sections, we modify the features discussed in Chapter 2 for weighted and

directed networks:

4.1 Common Neighbor Score

Newman’s work [8] on collaboration networks shows that there is a positive correlation between

the number of common neighbors of two nodes and the probability that there will be a link between

them in the future.

10

In an undirected network, the Common Neighbor Score of two nodes u and v is given by,

CN(u,v) = |Γ(u)∩Γ(v)| (9)

In a directed network, there are two Common Neighbor Scores - one based on the in-neighbors

and the other based on the out-neighbors.

CNo = |Γo(u)∩Γo(v)| (10)

CNi = |Γi(u)∩Γi(v)| (11)

To take into account the weight of the links, the sum of the average weights of the links from

the nodes u and v to the common neighbors is taken instead of simply the number of neighbors. So

we propose to extend the Common Neighbor Score as follows:

CNo,weighted = ∑
z∈(Γo(u)∩Γo(v))

w(u,z)+w(v,z)
2

(12)

CNi,weighted = ∑
z∈(Γi(u)∩Γi(v))

w(z,u)+w(z,v)
2

(13)

4.2 Preferential Attachment Score

Work by Barabasi et al. [10] on collaboration networks suggest that there is a positive correlation

between the probability of collaboration between two nodes and the product of the number of

neighbors of the two nodes.

In an undirected and unweighted network, the Preferential Attachment Score between two

nodes u and v is given by,

PA(u,v) = |Γ(u)| · |Γ(v)| (14)

11

In a directed network, since there are two neighbor sets, the two Preferential Attachment Scores

will be given by,

PAi(u,v) = |Γi(u)| · |Γi(v)| (15)

PAo(u,v) = |Γo(u)| · |Γo(v)| (16)

In a directed weighted network, to incorporate the weights of the links into the Preferential At-

tachment Score, it can be redefined as the product of the average link weights of the two neighbors

of the two nodes, written as,

PAi,weighted(u,v) =
(

∑z∈Γi(u)w(z,u)
|Γi(u)|

)
·
(

∑z∈Γi(v)w(z,v)
|Γi(v)|

)
(17)

PAo,weighted(u,v) =
(

∑z∈Γo(u)w(u,z)
|Γo(u)|

)
·
(

∑z∈Γo(v)w(v,z)
|Γo(v)|

)
(18)

4.3 Adamic-Adar Index

Adamic et al. [9] studied web pages and developed a measure to calculate the similarity between

web pages. They found that rare features are more important than common ones while calculating

the similarity between web pages. Their work can be easily applied to social networks - nodes take

the place of web pages and links take the place of web links.

In an undirected network, the Adamic-Adar Index of two nodes u and v is given by,

AA(u,v) = ∑
z∈(Γ(u)∩Γ(v))

1
log(|Γ(z)|)

(19)

If the network is directed, we will have two Adamic-Adar Index values based on the two

neighbor sets.

AAo(u,v) = ∑
z∈(Γo(u)∩Γo(v))

1
log |Γo(z)|

(20)

12

Figure 1: An example graph

AAi(u,v) = ∑
z∈(Γi(u)∩Γi(v))

1
log |Γi(z)|

(21)

To illustrate, consider the network in Figure 1. If we want to calculate the out-Adamic-Adar

Index between nodes u and v, the contributions of the common nodes d and e will be given by,

γ(d) =
1

log(w(d, f)+w(d,g)+w(d,h))
(22)

γ(e) =
1

log(w(e, i)+w(e, j))
(23)

The contributions of γ(d) and γ(e) towards the final out-Adamic-Adar Index need to take into

account the average weights of links to node d and e respectively.

13

AAo,weighted(u,v) =
1
2

(
w(u,d)+w(v,d)

γ(d)
+

w(u,e)+w(v,e)
γ(e)

)
(24)

Equation 24 can be generalized as,

AAo,weighted(u,v) =
1
2

(
∑

z∈(Γo(u)∩Γo(v))

w(u,z)+w(v,z)
log(∑x∈Γo(z)w(z,x))

)
(25)

Similarly, the in-Adamic-Adar Index can be derived to be,

AAi,weighted(u,v) =
1
2

(
∑

z∈(Γi(u)∩Γi(v))

w(z,u)+w(z,v)
log(∑x∈Γi(z)w(x,z))

)
(26)

4.4 Katz Score

Katz [11] defined a similarity measure based on the paths between two nodes. In the measure that

Katz defined, the contribution of shorter paths to the final score is higher than that of the longer

paths.

Mathematically, the Katz Score of (u,v) is given by,

KS(u,v) =
∞

∑
l=1

β
l · |ρ(u,v|l)| (27)

where β is the damping factor (0≤ β ≤ 1) and |ρ(u,v|l)| is the number of paths of length l from

node u to v. Liben-Nowell et al. [1] have shown that performance of the Katz Score is best for

β ≤ 0.005.

As seen in equation 27, the Katz Score depends on only the path between the nodes. So the

same equation can be applied to directed networks. However, it still needs to be adjusted for link

weights. To account for the link weights, the number of paths in equation 27 is replaced by the

14

sum of average link weights.

Consider the network in Figure 1. The sets of paths from node u to v are,

ρ(u,v|1) = φ (28)

ρ(u,v|2) = {{(u,b),(b,v)},{(u,c),(c,v)}} (29)

ρ(u,v|3) = {{(u,b),(b,a),(a,v)}} (30)

The contribution of each path set towards the final Katz Score is as follows:

γ(1) = β
1 ·0 (31)

γ(2) = β
2 ·
(

w(u,b)+w(b,v)
2

+
w(u,c)+w(c,v)

2

)
(32)

γ(3) = β
3 ·
(

w(u,b)+w(b,a)+w(a,v)
3

)
(33)

The Katz Score from node u to v is then given by:

KSweighted(u,v) = γ(1)+ γ(2)+ γ(3) (34)

Equation 34 can be generalized as,

KSweighted(u,v) =
∞

∑
l=1

β
l · ∑

p∈ρ(u,v|l)

∑(x,y)∈p w(x,y)
l

(35)

15

4.5 Shortest Path Score

In an undirected and unweighted network, the Shortest Path score of (u,v) is simply the reciprocal

of the length of the shortest path from u to v.

To extend the Shortest Path Score to weighted and directed network, let us take the network in

Fig. 1 as an example. Let lmin represent the length of the shortest path. In the example network,

the length of the shortest path from u to v is 2.

The set of paths of length lmin is,

ρ(u,v|2) = {{(u,b),(b,v)},{(u,c),(c,v)}} (36)

The set of average link weights in the path set ρ(u,v|2) is given by,

ρ(u,v|2) =
{

w(u,b)+w(b,v)
2

,
w(u,c)+w(c,v)

2

}
(37)

The Shortest Path Score of (u,v) is then given by the average of the elements of the set ρ(u,v|2),

SPweighted(u,v) =
1
2

(
w(u,b)+w(b,v)

2
+

w(u,c)+w(c,v)
2

)
(38)

Equation 38 can be generalized as follows:

SPweighted(u,v) =
1

|ρ(u,v|lmin)| ∑
p∈ρ(u,v|lmin)

∑(x,y)∈p w(x,y)
lmin

(39)

16

4.6 Rooted PageRank

Rooted PageRank is a modification of the PageRank algorithm developed by Brin et al. [12]. The

Rooted PageRank between nodes u and v is defined as the probability that we will land on the node

v when we perform a random walk starting from node u under the following conditions:

1. There is a (1−α) probability of moving to a randomly chosen neighbor node from the

current node.

2. There is an α probability of the random walk restarting from the root u again.

To account for the link weights the probability of selecting the next neighbor node is propor-

tional to the associated link weight. This is shown in more detail in the algorithm for calculating

the Rooted PageRank (Algorithm 1).

17

Algorithm 1 Weighted PageRank Algorithm
1: procedure WEIGHTED–PAGERANK(u, v)
2: N = 1000 . The number of walks to perform
3: i = 0
4: n = 0
5: currentNode = u
6: while i < N do
7: if random(0,1) > α then . Reset the random walk
8: currentNode = u
9: else . Select a neighbor node

10: probDist = []
11: for all n ∈ Γo(currentNode) do . Probability of next node
12: probDist[n] = w(currentNode,n)/∑z∈Γo(currentNode)w(currentNone,z)
13: end for
14: currentNode = selectNode(Γo(currentNode), probDist)
15: if currentNode == v then . Check if node v is selected
16: n = n+1
17: end if
18: i = i+1
19: end if
20: end while
21: return n/i
22: end procedure

18

5 Incremental Method for Calculating Feature Scores

When the network feature scores are modified to take into account the link weights and direction

(Chapter 4), the time complexity of calculating them is higher compared to the unweighted and

undirected feature scores. In this chapter, we describe methods to calculate the weighted features

by iteratively updating them as new interactions between nodes and removal of links are observed.

Notations:

1. The network is observed at time [1,2,3, . . .T].

2. The decay factor of the network is δ per time interval.

3. It,t+1 is the set of node pairs that interact in the time interval [t, t +1].

4. S is the set of all possible node pairs.

5.1 Common Neighbor Score

Let CNo(u,v|t) and CNi(u,v|t) be the Common Neighbor Score of node pair (u,v) at time t based

on out-neighbor (equation 10) and in-neighbor (equation 11).

To update Common Neighbor Scores, we need to consider three cases:

1. Decay of link weight

2. Removal of link

3. Interaction between nodes

19

5.1.1 Effect of decay of link weight

If there were no interactions between the common neighbors of x and y at time interval [t, t + 1],

the weight of the link between two nodes a and b is,

w(a,b|t +1) = δ ·w(a,b|t) (40)

Consider the in-Common Neighbor Score between nodes x and y at time t.

CNi(x,y|t) = ∑
z∈(Γi(x)∩Γi(y))

w(z,x|t)+w(z,y|t)
2

(41)

The in-Common Neighbor Score of (x,y) at time t +1 is

CNi(x,y|t +1) = ∑
z∈(Γi(x)∩Γi(y))

w(z,x|t +1)+w(z,y|t +1)
2

(42)

= δ · ∑
z∈(Γi(x)∩Γi(y))

w(z,x|t)+w(z,y|t)
2

(43)

CNi(x,y|t +1) = δ ·CNi(x,y|t) (44)

Similarly, the out-Common Neighbor Score is,

CNo(x,y|t +1) = δ ·CNi(x,y|t) (45)

5.1.2 Effect of removal of link

Suppose that there was a link between nodes u and v at time t but it has been removed at time

(t + 1). The removal of the link (u,v) will affect CNo(u,a) and CNi(v,a) for a node a that was

connected to u or v as shown in Figures 2a and 2b. Consider the node a connected as shown in

20

(a) Case 1 (b) Case 2

Figure 2: Node pairs that interaction between (u,v) will affect

Figure 2a and recall that,

CNo(u,a|t) =
w(u,v|t)+w(a,v|t)

2
+κ, (46)

where κ is the component of CNo(u,a|t) that is independent of node v.

If the link (u,v) is removed at time (t +1),

CNo(u,a|t +1) = δ ·κ, (47)

which can be written as,

CNo(u,a|t +1) = δ ·
(

w(u,v|t)+w(a,v|t)
2

+κ

)
−δ · w(u,v|t)+w(a,v|t)

2
(48)

CNo(u,a|t +1) = δ ·CNo(u,a|t)−δ · w(u,v|t)+w(a,v|t)
2

(49)

Removal of the link (u,v) will not affect the in-Common Neighbor Score of (u,a).

Similarly, for the case where node a is connected as shown in Figures 2a, it can be shown that

21

the out-Common Neighbor Score of (a,v) will not be affected by the removal of the link (u,v) and,

CNi(a,v|t +1) = δ ·CNi(a,v|t)−δ · w(u,v|t)+w(u,a|t)
2

(50)

5.1.3 Effect of interaction between nodes

If a pair of nodes (u,v) interact with each other in [t, t+1], it will affect CNo(u,a) and CNi(v,a) for

node a that is connected to u or v, as shown in Figures 2a and 2b, consider the node a, as shown in

Figure 2a, at time (t +1).

If there is a link from u to v at time t, then,

CNo(u,a|t) =
w(u,v|t)+w(a,v|t)

2
+κ, (51)

where κ is the component of CNo(u,a|t) that is independent of node v.

At time t +1, the weights w(u,v) and w(a,v) are updated, and will be,

w(u,v|t +1) = δ ·w(u,v)+1 (52)

w(a,v|t +1) = δ ·w(a,v) (53)

Consequently, at time (t +1),

CNo(u,a|t +1) =
w(u,v|t +1)+w(a,v|t +1)

2
+δ ·κ (54)

=
δ ·w(u,v|t)+1+δ ·w(a,v|t)

2
+δ ·κ (55)

= δ ·
(

w(u,v)+w(a,v)
2

+κ

)
+

1
2

(56)

= δ ·CNo(u,a|t)+0.5 (57)

22

On the other hand, if there was no link from u to v at time t,

CNo(u,a|t) = κ (58)

CNo(u,a|t +1) =
w(u,v|t +1)+w(a,v|t +1)

2
+δ ·κ (59)

CNo(u,a|t +1) =
w(u,v|t +1)+w(a,v|t +1)

2
+δ ·CNo(u,a|t) (60)

Likewise, if there is a node a as shown in Figure 2b at time (t +1), if there is a link from u to

v at time t, it can be similarly shown that,

CNi(v,a|t +1) = δ ·CNi(v,a|t)+0.5 (61)

On the other hand, if there is no link from u to v at time t, then

CNi(a,v|t +1) =
w(u,v|t +1)+w(u,a|t +1)

2
+δ ·CNi(a,v|t) (62)

5.2 Preferential Attachment Score

Let PFo(u,v|t) and PFi(u,v|t) be the Preferential Attachment Score of node pair (u,v) at time t.

To update PFo(u,v|t) and PFi(u,v|t), we need to take into account the decay in the link weight,

changes due to links that are removed and the effect of interactions between two nodes.

5.2.1 Effect of decay of link weight

Consider the out-Preferential Attachment Score between nodes u and v at time t.

PFo(u,v|t) =
(

∑z∈Γo(u|t)w(u,z|t)
|Γo(u|t)|

)
·
(

∑z∈Γo(v|t)w(v,z|t)
|Γo(v|t)|

)
(63)

23

If there was no interactions between u and v and any of their neighbors in time interval [t, t+1],

Γo(u|t +1) = Γo(x|t) (64)

Γo(v|t +1) = Γo(x|t) (65)

w(u,x|t +1) = δ ·w(u,x|t +1) (66)

w(v,x|t +1) = δ ·w(v,x|t +1) (67)

The out-Preferential Attachment Score at time (t +1) is,

PFo(u,v|t +1) =
(

∑z∈Γo(u|t+1)w(u,z|t +1)
|Γo(u|t +1)|

)
·
(

∑z∈Γo(v|t+1)w(v,z|t +1)
|Γo(v|t +1)|

)
(68)

=

(
∑z∈Γo(u|t) δ ·w(u,z|t)

|Γo(u|t)|

)
·
(

∑z∈Γo(v|t) δ ·w(v,z|t)
|Γo(v|t)|

)
(69)

= δ
2 ·
(

∑z∈Γo(u|t+1)w(u,z|t +1)
|Γo(u|t +1)|

)
·
(

∑z∈Γo(v|t+1)w(v,z|t +1)
|Γo(v|t +1)|

)
(70)

PFo(u,v|t +1) = δ
2 ·PFo(u,v|t) (71)

Similarly, the in-Preferential Attachment Score at time (t +1) can be show to be,

PFi(u,v|t +1) = δ
2 ·PFi(u,v|t) (72)

5.2.2 Effect of removal of link

Suppose that there was a link between nodes u and v at time t but it is broken at (t +1).

Consider the Preferential Attachment Score between nodes u and x at time t.

PFo(u,x|t) =
(

∑z∈Γo(u|t)w(u,z|t)
|Γo(u|t)|

)
·
(

∑z∈Γo(x|t)w(x,z|t)
|Γo(x|t)|

)
(73)

24

The Preferential Attachment Score of (u,x) at time (t +1),

PFo(u,x|t +1) =
(

∑z∈Γo(u|t+1)w(u,z|t +1)
|Γo(u|t +1)|

)
·
(

∑z∈Γo(x|t+1)w(x,z|t +1)
|Γo(x|t +1)|

)
(74)

Since the link (u,v) is broken at time t +1,

PFo(u,x|t +1) =
(

∑z∈Γo(x|t) δ ·w(x,z|t)
|Γo(x|t)|

)
·

((
∑z∈Γo(u|t) δ ·w(u,z|t)

)
−δ ·w(u,v|t)

|Γo(u|t)−1|

) (75)

= δ
2 · |Γo(u|t)|
|Γo(u|t)|−1

·
(

∑z∈Γo(u|t)w(u,z|t)
|Γo(u|t)|

)
·
(

∑z∈Γo(x|t)w(x,z|t)
|Γo(x|t)|

)
−δ ·

(
w(u,v|t)
|Γo(u|t)|−1

)
·
(

∑z∈Γo(x|t)w(x,z|t)
|Γo(x|t)|

) (76)

PFo(u,x|t +1) = δ
2 · |Γo(u|t)|
|Γo(u|t)|−1

·PFo(u,x|t)

−δ ·
(

w(u,v|t)
|Γo(u|t)|−1

)
·
(

∑z∈Γo(x|t)w(x,z|t)
|Γo(x|t)|

)
(77)

Similarly,

PFi(x,v|t +1) = δ
2 · |Γi(v|t)|
|Γi(v|t)|−1

·PFi(x,v|t)

−δ ·
(

w(u,v|t)
|Γi(v|t)|−1

)
·
(

∑z∈Γi(x|t)w(z,x|t)
|Γi(x|t)|

)
(78)

5.2.3 Effect of interaction between nodes

Consider the out-Preferential Attachment Score between nodes u and x at time t.

PFo(u,x|t) =
(

∑z∈Γo(u|t)w(u,z|t)
|Γo(u|t)|

)
·
(

∑z∈Γo(x|t)w(x,z|t)
|Γo(x|t)|

)
(79)

25

Let,

P =

(
∑z∈Γo(x|t)w(x,z|t)
|Γo(x|t)|

)
(80)

Assume there is an interaction between nodes u and v at time interval [t, t+1] and the link (u,v)

existed at time t,

PFo(u,x|t +1) =

((
∑z∈Γo(u|t) δ ·w(u,z|t)

)
+1

|Γo(u|t)|

)
·
(

∑z∈Γo(v|t) δ ·w(x,z|t)
|Γo(x|t)|

)
(81)

= δ
2 ·
(

∑z∈Γo(u|t)w(u,z|t)
|Γo(u|t)|

)
·P+

δ ·P
|Γo(u|t)|

(82)

PFo(u,x|t +1) = δ
2 ·PFo(u,x|t)+δ ·

(
∑z∈Γo(x|t)w(x,z|t)
|Γo(u|t)| · |Γo(x|t)|

)
(83)

If the link (u,v) did not exist at time t,

PFo(u,x|t +1) =

((
∑z∈Γo(u|t) δ ·w(u,z|t)

)
+1

|Γo(u|t)|+1

)
·
(

∑z∈Γo(v|t) δ ·w(x,z|t)
|Γo(x|t)|

)
(84)

=

((
∑z∈Γo(u|t) δ ·w(u,z|t)

)
+1

|Γo(u|t)|

)
·δ ·P ·

(
|Γo(u|t)|
|Γo(u|t)|+1

)
(85)

=

(
δ 2 ·P ·

(
∑z∈Γo(u|t)w(u,z|t)

)
+δ ·P

|Γo(u|t)|

)
·
(
|Γo(u|t)|
|Γo(u|t)|+1

)
(86)

PFo(u,x|t +1) = δ ·
(

∑z∈Γo(x|t)w(x,z|t)
|Γo(x|t)| · (|Γo(u|t)|+1)

)
+δ

2 ·
(
|Γo(u|t)|
|Γo(u|t)|+1

)
·PFo(u,x|t) (87)

Similarly, for the node pair (v,x) if (u,v) existed at time t, the in-Preferential Attachment is,

PFi(v,x|t +1) = δ
2 ·PFi(v,x|t)+δ ·

(
∑z∈Γi(x|t)w(z,x|t)
|Γi(v|t)| · |Γi(x|t)|

)
(88)

26

If (u,v) did not exist at time t,

PFi(v,x|t +1) = δ ·
(

∑z∈Γi(x|t)w(z,x|t)
|Γi(x|t)| · (|Γi(v|t)|+1)

)
+δ

2 ·
(
|Γi(v|t)|
|Γi(v|t)|+1

)
·PFi(v,x|t) (89)

5.3 Adamic Adar Index

Let AAo(u,v|t) and AAi(u,v|t) be the Adamic-Adar Index of node pair (u,v) at time t. To update

AAo(u,v|t) and AAi(u,v|t), we need to take into account the decay in the link weight, the changes

due to links that are removed and the effect of interactions between two nodes.

5.3.1 Effect of decay of link weight

Assume that for a pair of nodes u and v, there are no interactions between nodes that affect the

Adamic-Adar Index of (u,v) at time (t +1).

Consider the out-Adamic-Adar Index between nodes u and v at time t.

AAo(u,v|t) =
1
2

(
∑

z∈(Γo(u|t)∩Γo(v|t))

w(u,z|t)+w(v,z|t)
log(∑x∈Γo(z|t)w(z,x|t))

)
(90)

Let,

A(u,v,z|t) = w(u,z|t)+w(v,z|t) (91)

B(z|t) = log(∑
x∈Γo(z|t)

w(z,x|t)) (92)

27

At time (t +1),

AAo(u,v|t +1) =
1
2

(
∑

z∈(Γo(u|t+1)∩Γo(v|t+1))

(w(u,z|t +1)+w(v,z|t +1))
log(∑x∈Γo(z|t+1)w(z,x|t +1))

)
(93)

=
1
2

(
∑

z∈(Γo(u|t)∩Γo(v|t))

δ · (w(u,z|t)+w(v,z|t))
log(δ)+ log(∑x∈Γo(z|t)w(z,x|t))

)
(94)

=
1
2

(
∑

z∈(Γo(u|t)∩Γo(v|t))

δ ·A(u,v,z|t)
log(δ)+B(z|t)

)
(95)

Let us assume that there is an F such that,

δ ·A(u,v,z|t)
log(δ)+B(z|t)

= F · A(u,v,z|t)
B(z|t)

(96)

Then,

F =
δ

log(δ)/B(z|t)+1
(97)

For δ → 1,
log(δ)
B(z|t)

≈ 0 (98)

F ≈ δ (99)

So,

AAo(u,v|t +1)≈ δ ·AAo(u,v|t) (100)

Similarly,

AAi(u,v|t +1)≈ δ ·AAi(u,v|t) (101)

28

(a) Case 1 (b) Case 2

Figure 3: Node pairs that interaction between (u,v) will affect

5.3.2 Effect of removal of links

Suppose that there was a link between u and v at time t, but it is removed at time (t + 1). The

removal of (u,v) will affect the Adamic-Adar Index of (u,a) and (v,a) for a node a which was

connected to u or v as shown in Figure 2a and 2b at time t. If there are two nodes a and b that was

connected to u or v at time t as shown in Figure 3a and 3b, it will affect the Adamic-Adar Index of

(a,b).

1. Let us assume that the nodes u, v and a were connected to each other as shown in Figure 2a

at time t.

At time t,

AAo(u,a|t) =
w(u,v|t)+w(a,v|t)

2 · log
(
∑z∈Γo(v|t)w(v,z|t)

) +κ (102)

where κ is the component of the AAo(u,a|t) that is independent of node v.

At time (t +1),

AAo(u,a|t +1) = δ ·κ (103)

29

AAo(u,a|t +1) = δ ·

(
w(u,v|t)+w(a,v|t)

2 · log
(
∑z∈Γo(v|t)w(v,z|t)

) +κ

)

− δ · (w(u,v|t)+w(a,v|t))
2 · log

(
∑z∈Γo(v|t)w(v,z|t)

) (104)

AAo(u,a|t +1) = δ ·AAo(u,a|t)−
δ · (w(u,v|t)+w(a,v|t))

2 · log
(
∑z∈Γo(v|t)w(v,z|t)

) (105)

2. If the nodes u, v and a were connected to each other as shown in Figure 2b at time t, it can

be similarly shown that,

AAi(v,a|t +1) = δ ·AAi(v,a|t)−
δ · (w(u,v|t)+w(u,a|t))

2 · log
(
∑z∈Γi(u|t)w(z,u|t)

) (106)

3. If the nodes u, v, a and b were connected to each other as shown in Figure 3b at time t, it can

be shown that,

AAo(a,b|t +1) = δ ·AAo(a,b|t)−
δ · (w(a,u|t)+w(b,u|t))

2 · log
(
∑z∈Γo(u|t)w(u,z|t)

)
+

δ · (w(a,u|t)+w(b,u|t))
2 · log

(
∑z∈Γo(u|t+1)w(u,z|t +1)

) (107)

4. If the nodes u, v, a and b were connected to each other as shown in Figure 3a at time t,

AAi(a,b|t +1) = δ ·AAi(a,b|t)−
δ · (w(v,a|t)+w(v,b|t))

2 · log
(
∑z∈Γi(v|t)w(z,v|t)

)
+

δ · (w(v,a|t)+w(a,b|t))
2 · log

(
∑z∈Γi(v|t+1)w(z,v|t +1)

) (108)

5.3.3 Effect of interaction between nodes

If a pair of nodes (u,v) interact in [t, t +1], it will affect the Adamic-Adar Index of (u,a) and (v,a)

where a is a node connected to u or v as shown in Figure 2a and 2b. If there are two nodes a and b

30

that are connected to u or v as shown in Figure 3a and 3b, it will affect the Adamic-Adar Index of

(a,b)

1. Let us consider the nodes u,v and a connected to each other as shown in Figure 2a at time

(t +1). If the link (u,v) exist at time t,

AAo(u,a|t) =
w(u,v|t)+w(a,v|t)

2 · log
(
∑z∈Γo(v|t)w(v,z|t)

) + κ (109)

Then, at time (t +1),

AAo(u,a|t +1) =
δ ·w(u,v|t)+δ ·w(a,v|t)+1
2 · log

(
∑z∈Γo(v|t) δ ·w(v,z|t)

) +δ ·κ (110)

AAo(u,a|t +1) = δ ·AAo(u,a|t)+
1

2 · log
(
∑z∈Γo(v|t) δ ·w(v,z|t)

) (111)

If the link (u,v) did not exist at time t, at time t,

AAo(u,a|t) = κ (112)

Then, at time (t +1),

AAo(u,a|t +1) =
1+δ ·w(a,v|t)

2 · log
(
∑z∈Γo(v|t) δ ·w(v,z|t)

) +δ ·κ (113)

AAo(u,a|t +1) =
1+δ ·w(a,v|t)

2 · log
(
∑z∈Γo(v|t) δ ·w(v,z|t)

) +δ ·AAo(u,v|t) (114)

2. Suppose the nodes u,v and a are connected to each other as shown in Figure 2b at time

(t +1). If (u,v) existed in time t, it can be similarly shown that,

AAi(a,v|t +1) = δ ·AAi(a,v|t)+
1

2 · log
(
∑z∈Γi(u|t) δ ·w(z,u|t)

) (115)

31

If (u,v) did not existed in time t,

AAi(a,v|t +1) = δ ·AAi(a,v|t)+
1+δ ·w(a,u|t)

2 · log
(
∑z∈Γi(u|t) δ ·w(z,u|t)

) (116)

3. Let us consider the nodes u,v,a and b connected as shown in Figure 3b. At time t,

AAo(a,b|t) =

(
w(a,u|t)+w(b,u|t)

log
(
∑z∈Γo(u|t)w(u,z|t)

))+κ, (117)

where κ is the component of AAo(a,b|t) that is independent of the node u.

At time (t +1),

AAo(a,b|t +1) =

(
w(a,u|t +1)+w(b,u|t +1)

log
(
∑z∈Γo(u|t+1)w(u,z|t +1)

))+δ ·κ (118)

=

(
δ ·w(a,u|t)+δ ·w(b,u|t)

log
(
∑z∈Γo(u|t+1)w(u,z|t +1)

))+δ ·κ (119)

Then,

AAo(a,b|t +1) = δ ·AAo(a,b|t)

+δ ·

(
w(a,u|t)+w(b,u|t)

log
(
∑z∈Γo(u|t+1)w(u,z|t +1)

) − w(a,u|t)+w(b,u|t)
log
(
∑z∈Γo(u|t)w(u,z|t)

)) (120)

4. If the nodes u,v,a and b are connected as show in Figure 3a at time (t +1).

AAi(a,b|t +1) = δ ·AAi(a,b|t)

+δ ·

(
w(v,a|t)+w(v,b|t)

log
(
∑z∈Γi(v|t+1)w(z,v|t +1)

) − w(a,u|t)+w(b,u|t)
log
(
∑z∈Γi(u|t)w(z,v|t)

)) (121)

32

5.4 Katz Score

Let is assume that KS(u,v|t) is the Katz Score of (u,v) at time t and β l is the damping factor for

the Katz Score. Work by Libel-Nowell et al. [1] have shown that β < 0.005. So for paths of length

four or above, the damping factor becomes 6.25× 10−10 or lower. So calculations of Katz Score

in real world networks are approximated by considering only paths with length three or less.

5.4.1 Effect of decay of link weight

Assume that KS(u,v|t) is the Katz Score at time t and there is no interactions among any nodes

that affect KS(u,v|t).

KS(u,v|t) =
3

∑
l=1

β
l · ∑

p∈ρ(u,v|l|t)

(
∑(x,y)∈p w(x,y|t)

l

)
(122)

Then, at time (t +1),

KS(u,v|t +1) =
3

∑
l=1

β
l · ∑

p∈ρ(u,v|l|t)

(
∑(x,y)∈p w(x,y|t +1)

l

)
(123)

= δ ·
3

∑
l=1

β
l · ∑

p∈ρ(u,v|l|t)

(
∑(x,y)∈p w(x,y|t)

l

)
(124)

KS(u,v|t +1) = δ ·KS(u,v|t) (125)

5.4.2 Effect of removal of link

Let us assume that there was a link between nodes u and v at time t, but it is removed at time

(t+1). This will affect the Katz score between (u,v), (u,a),(a,v) and (a,b) if they were connected

as shown in Figure 4 at time t.

33

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 4: Node pairs for which interaction between (u,v) will affect the Katz Score

34

1. Case 1. (Figure: 4a)

If the Katz Score of (u,v) at time t is,

KS(u,v|t) = β ·w(u,v)+κ, (126)

where κ is the component of KS(u,v|t) that is independent of the path (u,v).

At time t, if the link (u,v) has been removed,

KS(u,v|t +1) = δ ·κ (127)

= δ · (β ·w(u,v|t)+κ)−δ ·β ·w(u,v|t) (128)

KS(u,v|t +1) = δ ·KS(u,v|t)−δ ·β ·w(u,v|t) (129)

2. Similarly in Case 2. (Figure: 4b),

KS(u,a|t +1) = δ ·KS(u,a|t)−δ ·β 2 · w(u,v|t)+w(v,a|t)
2

(130)

3. Similarly in Case 3. (Figure: 4c),

KS(a,v|t +1) = δ ·KS(a,v|t)−δ ·β 2 · w(u,v|t)+w(a,u|t)
2

(131)

4. Similarly in Case 4. (Figure: 4d),

KS(a,b|t +1) = δ ·KS(a,b|t)−δ ·β 3 · w(a,u|t)+w(u,v|t)+w(v,b|t)
3

(132)

35

5.4.3 Effect of interaction between nodes

Let us assume that interaction between (u,v) affects the Katz score between two nodes. The

interaction will affect the Katz score between (u,v), (u,a),(a,v) and (a,b) if they are connected as

shown in Figure 4.

1. If the nodes u and v are connected as shown in Figure 4a,

w(u,v|t +1) = δ ·w(u,v|t)+1 (133)

KS(u,v|t +1) =
3

∑
l=1

β
l · ∑

p∈ρ(u,v|l|t+1)

(
∑(x,y)∈p w(x,y|t +1)

l

)
(134)

=

(
3

∑
l=1

β
l · ∑

p∈ρ(u,v|l)

(
∑(x,y)∈p δ ·w(x,y|t)

l

))
+β (135)

KS(u,v|t +1) = δ ·KS(u,v|t)+β (136)

2. If the nodes are connected as shown in Figure 4b, and there is a link from u to v at time t,

ρ(u,v|l|t +1) = ρ(u,v|l|t) (137)

w(u,v|t +1) = δ ·w(u,v|t)+1 (138)

KS(u,a|t +1) = δ ·

(
3

∑
l=1

β
l · ∑

p∈ρ(u,a|l|t)

(
∑(x,y)∈p w(x,y|t +1)

l

))
+

β 2

2
(139)

KS(u,a|t +1) = δ ·KS(u,a|t)+ β 2

2
(140)

36

If there was no link from u to v at time t,

ρ(u,a|l|t +1) = ρ(u,a|l|t)+{(u,v),(v,a)} (141)

KS(u,a|t +1) = δ ·KS(u,a|t)+β
2 · 1+δ ·w(v,a)

2
(142)

3. Similarly, if the nodes are connected as shown in Figure 4c and there is a link from u to v at

time t,

KS(a,v|t +1) = δ ·KS(a,v|t)+ β 2

2
(143)

If there was no link from u to v at time t,

KS(a,v|t +1) = δ ·KS(a,v|t)+β
2 · 1+δ ·w(a,u|t)

2
(144)

4. Similarly, if the nodes are connected as shown in Figure 4d, and there is a link from u to v at

time t,

KS(a,b|t +1) = δ ·KS(a,b|t)+ β 3

3
(145)

If there was no link from u to v at time t,

KS(a,b|t +1) = β
2 · 1+δ ·w(a,u|t)+δ ·w(v,b|t)

3
+δ ·KS(a,b|t) (146)

5.5 Shortest Path Score

Let SP(u,v|t) be the shortest path score between two nodes at time t, lmin(u,v|t) be the length of

the shortest path from node u to v at time t and ρmin(u,v|t) be the set of paths of length lmin(u,v|t)

from u to v at t.

37

5.5.1 Effect of decay of link weight

The Shortest Path Score of (u,v) at time t is,

SP(u,v|t) = 1
|ρmin(u,v|t)| ∑

p∈ρmin(u,v|t)

∑(x,y)∈p(x,y|t)w(x,y|t)
lmin(u,v|t)

(147)

If the interactions between the nodes in time interval [t, t + 1] do not affect lmin(u,v|t) or

ρmin(u,v|t), the Shortest Path Score at time (t +1) is,

SP(u,v|t +1) =
1

|ρmin(u,v|t +1)|
· ∑

p∈ρmin(u,v|t+1)

∑(x,y)∈p(x,y|t+1)w(x,y|t +1)
lmin(u,v|t +1)

(148)

=
1

|ρmin(u,v|t)| ∑
p∈ρmin(u,v|t)

∑(x,y)∈p(x,y|t+1) δ ·w(x,y|t)
lmin(u,v|t)

(149)

SP(u,v|t +1) = δ ·SP(u,v|t) (150)

5.5.2 Effect of interaction between nodes

If there is an interaction between nodes (u,v) at time interval [t, t + 1],the interaction will change

the Shortest Path Score of (x,y) under two cases.

1. The link (u,v) did not exist in Et , and the new interaction creates a new shortest path.

2. The link (u,v) exist in Et , nodes u and v lies in the shortest path from x to y.

Suppose the link (u,v) did not exist in Et , if the interaction between (u,v) forms a new shortest

path from x to y:

1. The new shortest path should contain (u,v).

38

2. The path from x to u in the new shortest path should be the shortest path from x to u.

3. The path from v to y in the new shortest path should be the shortest path from v to y.

So, the interaction between u and v will create a new shortest path from x to y if,

lmin(x,y|t)≥ lmin(x,u|t)+ lmin(v,y|t)+1 (151)

If a new shortest path is created from x to y,

lmin(x,y|t +1) = lmin(x,u|t)+ lmin(v,y|t)+1 (152)

ρmin(x,y|t +1) = {ρmin(x,v|t)+(u,v)+ρmin(v,y|t)} (153)

However, if the link (u,v) exist in Et and if (u,v) is in the shortest path from x to y,

w(u,v|t +1) = δ ·w(u,v|t)+1 (154)

SP(x,y|t +1) = δ ·SP(x,y|t)+ 1
|ρmin(x,y|t)| · lmin(x,y|t)

(155)

If (u,v) is in not the shortest path from x to y,

SP(x,y|t +1) = δ ·SP(x,y|t) (156)

5.5.3 Effect of removal of link

Let us assume that there was a link between nodes u and v at time t, but not at time t. Let us assume

that (u,v) was in a shortest path p from node x to y.

Then removal of (u,v) will break the path p, and its contribution towards the Shortest Path

39

Score from x to y should be removed.

At time t,

SP(x,y|t) =
(
∑(a,b)∈p w(a,b|t)

)
+κ

|ρ(x,y|t)| · lmin(x,y|t)
(157)

where κ is the contribution from the other paths that do not contain (u,v).

At time (t +1), if (u,v) is broken, the path p does not exist anymore. So,

|ρ(x,y|t +1)|= |ρ(x,y|t)|−1 (158)

SP(x,y|t) = κ

(|ρ(x,y|t)|−1) · lmin(x,y|t)
(159)

= δ · |ρ(x,y|t)|
|ρ(x,y|t)|−1

·

((
∑(a,b)∈p w(a,b|t)

)
+κ

|ρ(x,y|t)| · lmin(x,y|t)

)
−δ ·

∑(a,b)∈p w(a,b|t)
(|ρ(x,y|t)|−1) · lmin(x,y|t)

(160)

SP(x,y|t) = δ · |ρ(x,y|t)|
|ρ(x,y|t)|−1

·SP(x,y|t)−δ ·
∑(a,b)∈p w(a,b|t)

(|ρ(x,y|t)|−1) · lmin(x,y|t)
(161)

5.6 Rooted PageRank

Consider the Rooted PageRank algorithm given in 1. The teleportation probability α determines

the probability that the random walk with reach a certain length.

We can approximate the Rooted PageRank by considering only paths that has a probability ot

at least p of being reached by a random walk. Suppose that lc is the maximum path length that has

a probability p or more of being reached.

p≥ (1−α)lc (162)

40

lc ≤
⌊

log p
log(1−α)

⌋
(163)

This means that if there is an interaction between (u,v), it will effect the Rooted PageRank of

nodes x and y if they are at a maximum distance of lc away from u or v.

Work by Liben-Nowell et al [1] have shown that the optimum value of α is 0.5. So, to approx-

imate the Rooted PageRank by taking only paths of probability p = 0.1 or greater,

lc ≤
⌊

log(0.1)
log(1−0.5)

⌋
(164)

lc ≤ b3.21c (165)

lc ≤ 3 (166)

5.6.1 Effect of decay of link weight

Let I be the set of node pairs that interact in time interval [t, t +1], R be the set of node pairs that

had a link at time t but is broken in time (t + 1), C be the set of all nodes in the set of node pairs

(I∪R) and V be the set of all node pairs.

In Algorithm 1, it can be seen that if the link weights are changed by the same factor, the value

of the Rooted PageRank will not change. So, for any node pair (u,v) such that u /∈C∧ v /∈C, the

decay in link weight will not change the Rooted PageRank.

5.6.2 Effect of interactions between nodes and removal of links

Let D be the set of all node pairs that are within lc distance from the nodes in C.

So, to update the Rooted PageRank, we need to only recalculate it for nodes in D. The algo-

rithm for updating the Rooted PageRank is given in Algorithm 8.

41

6 Link Prediction as a Classification Problem

In this chapter, we discuss the problem of link prediction as a classification problem. We will also

address the problem that arises naturally due to the imbalance between the negative and positive

classes.

6.1 Link Prediction Method

As discusses earlier, the network observed over time are < V,E0 >, < V,E1 >, . . .< V,ET >.

However, we consider only three snapshots; that is we consider the networks G∗1 =< V,Et1 >,

G∗2 =<V,Et2 > and G∗3 =<V,Et3 > at time t1, t2 and t3 such that t1 < t2 < t3.1

Recall that a deficiency of the method described in Chapter 2.2 is that the network G2 cannot

be observed in observed in real world cases, and consequently the feature set cannot be used to

predict edges. For this reason, in our method, the features for the training data are generated from

G∗1 and the class labels for the training data are generated from G∗2. In other words, the training

set for a classifier consists of (F1,C2). The features for the testing data are generated from G∗2 to

predict the links in G∗3.

The training data and the testing data are generated as described below:

1. For all possible node pairs (u,v) the features for training are calculated from G∗1.

Ftrain = {(s1(u,v|G∗1),s2(u,v|G∗1), . . .sn(u,v|G∗1)) : u,v ∈V} (167)

where, s f (u,v|G∗t) is a score associated with node pair (u,v) in network G∗t for a feature f .

2. The class label for the training data is calculated from G∗2. A pair of nodes (u,v) is considered

to be in the positive class if there is a link from u to v in G∗2; otherwise it is considered to be
1It should be noted here that t1 should not be very small. If t1 is very small, the missing past effect [13] will come

into play and the learning data will be inaccurate.

42

in the negative class.

Ctrain = {class(u,v|G∗2) : u,v ∈V} (168)

3. The feature set Ftest is calculated for all possible node pairs (u,v) using G∗2. This is the testing

data.

Ftest = {(s1(u,v|G∗2),s2(u,v|G∗2), . . .sn(u,v|G∗2)) : u,v ∈V} (169)

There are two differences between our method and the earlier methods:

1. While the method by Al Hasan et al. [2] uses two networks, G1,G2, our method uses three

(G∗1,G
∗
2 and G∗3). This is to overcome the problem with the training network used by Al

Hasan et al., where G2 will be unknown in a real world network, as described in Section 2.2.

In our method G∗3 is the unknown and G∗2 is used to calculate the testing data.

2. In the earlier methods of link prediction (Chapter 2), the size of the testing data is always

smaller than the training data because existing links are not included in the testing data. If

the links are permanent, the node pairs that already have a link between them in the training

network are not included in the testing data. However, in our method, since links are not

permanent, the training data and the testing data have the same size.

6.2 Handling Class Imbalance

As mentioned in Section 2.3, in many real world networks, the size of the positive class is much

smaller than that of the negative class. So, when we look at link prediction as a classification

problem, the training data will be highly imbalanced.

Previous works done in classification of extremely imbalanced data [14, 15, 16, 17] have shown

that good results can be obtained using an ensemble of SVM classifiers trained with the minority

class and different samples of the majority class. We implement the proposed ensemble approach

as described below:

43

1. Suppose the training data is Dtrain. Consider its two components D+ and D− associated with

the positive and negative class respectively, where |D−|>> |D+|.

2. To use an ensemble of m SVM classifiers, n samples [S1,S2, . . .Sn] each of size |D+|, are

taken from D− without replacement. In our simulations, m = 10.

3. For i = 1,2, . . . ,m, we train the classifier Ci using the sample Si and D+, and class member-

ship represented by 1 for D+ and 0 for Si.

4. Let Pi consists of the predictions by classifier Ci, i = 1,2, . . . ,m.

5. The predictions P1,P2, . . .Pn are combined using majority voting to generate the final predic-

tion P.

P(u,v) =

1 if (

m
∑

i=0
Pi(u,v))> n/2

0 otherwise

(170)

44

7 Data

In this chapter, we describe the data used for simulation and testing, and the pre-processing done

to the data.

7.1 Data Source

In this thesis, the data used for simulation is the Twitter @-mention network. This network is

obtained from the Twitter Streaming API [6] by observing it for 28 days. It contains 91169 nodes

and 13087872 interactions between node pairs over the 28 days.

In this network, nodes represent users and there is a link from node u to v if u sends a tweet

mentioning v. The links in this network are not permanent and they are directed. In the Twitter

network, the size of the positive class is much smaller than that of the negative class.

The dataset consists of networks observed every hour < V,E1 >, < V,E2 >, . . .< V,E672 >

which are generated using the network model described in Chapter 3. In this network the values of

θ and δ are 0.2 and 0.9 per hour respectively.

Spammers and bots are removed from this network by using the Local Outlier Factor density-

based outlier detection [20] using the in-degree and out-degree as features.

7.2 Data Preparation

As mentioned in Section 7.1, the Twitter data has approximately 105 nodes. So, there are approxi-

mately 1010 possible links.

Because of the size of the Twitter network, it is computationally very expensive to perform link

prediction over the entire network. So five sets of sample nodes V1,V2, . . .V5 are taken from the set

45

V , each containing 500 nodes. The five samples are taken from areas of the network with different

densities. 2

Sample |Et1| |Et2| |Et3| Density at t3
V1 729 810 824 0.0033
V2 780 893 973 0.0039
V3 1251 1314 1298 0.0056
V4 1407 1463 1497 0.0060
V5 1564 1768 1699 0.0068

Table 3: Sizes of the sample networks

To apply the link prediction method described in Section 6.1, t1 = 336, t2 = 504 and t3 =

672.The observations were made every hour, so the value of ti is in hours. Thus we are using the

networks observed on day 14 and day 21 to predict the links in the network on day 28.

2The density of a set of nodes is defined as the ratio of the number of connections between the nodes to the number
of potential connections. The density of a set of nodes Vi at time t will be given by,

Density(Vi|t) =
|{(u,v) : (u,v ∈Vi)∧ ((u,v) ∈ Et)}|

|Vi| · (|Vi|−1)
(171)

46

8 Link Prediction Results

In this chapter, we present the results of from the simulation done using the data described in

Chapter 7. As mentioned in Section 7.1, the positive class is much smaller than the negative class.

So, the ensemble method described in Section 6.2 is used.

The link prediction (Section 6.1) is performed on the five sets of nodes mentioned in Sec-

tion 7.2. Let P1,P2,P3,P4 and P5 represent the predictions for node sets V1,V2,V3,V4 and V5.

Work by Fawcett [7] suggests that for datasets with imbalanced classes, the area under curve

(AUC) of the receiver operating curve (ROC) is a more accurate measure of performance than

accuracy and recall. So the predictions made using our method (Pi) is compared to the baseline

prediction (Qi) using the AUC of the ROC.

To provide a baseline to compare for comparison with our method, the Twitter network is as-

sumed to be unweighted and undirected, and the link prediction method described by Leichtenwal-

ter et al. [3] is applied. The baseline link prediction is performed for node sets V1,V2,V3,V4 and V5.

Let Q1,Q2,Q3,Q4 and Q5 represent these predictions.

The comparison between the AUC of Pi and Qi is given in Table 4. The comparison of the ROC

for V1, V2, V3, V4 and V5 are shown in Figures 5, 6, 7, 8 and 9.

Sample AUC of Qi AUC of Pi
V1 0.52 0.77
V2 0.73 0.79
V3 0.74 0.82
V4 0.78 0.83
V5 0.83 0.87

Table 4: AUC comparison between prediction using our method Pi and the baseline method Qi

47

Sample Number of correct predictions in Qi Number of correct predictions in Pi
V1 190 577
V2 195 632
V3 844 1064
V4 1168 1272
V5 1393 1529

Table 5: Number of correct predictions comparison between prediction using our method Pi and
the baseline method Qi

Figure 5: ROC for V1

48

Figure 6: ROC for V2

49

Figure 7: ROC for V3

50

Figure 8: ROC for V4

51

Figure 9: ROC for V5

52

Figure 10: Variation of AUC with Density

53

9 Analysis

The results in Chapter 8 show that our method performs better than the baseline method in all

cases. Our method takes the link weight and directions into consideration, but the baseline method

assumes that the network is undirected and unweighted.

The graph in Figure 10 shows the comparison of AUC for our method and the baseline method

against the density of the sample nodes. It can be seen that the performance of our method is much

better than the baseline method if the density is lower, i.e., the network is sparse.

10 Conclusion

When we consider networks in which the links are not permanent, the method of link prediction

described in this thesis can achieve performance better over other supervised learning methods.

While the improvement over the baseline method is around 3% AUC for a dense network, the

difference is very substantial (around 25% AUC) when the network is very sparse.

As mentioned in Chapter 2, most of the real world networks are sparse, and existing methods

do not take into consideration links that can be removed.

The features (4) for classification used in this thesis depend on only the network topology. This

means that this method can be applied easily to other type of networks.

54

Appendices

A Algorithms for Calculating Feature Scores

In Chapter 5, methods to incrementally update the feature scores are described. In this section, we

describe the algorithms to calculate the feature sores by using the methods described in Chapter 5.

A.1 Common Neighbor Score

Let I be the set of node pairs that interact with each other in time interval [t, t +1] and let R be the

set of node pairs whose links are broken in time interval [t, t +1].

Equations 44, 45 49, 50, 57, 60, 61 and 62 are used to develop an algorithm to iteratively update

the common neighbor score for all possible node pairs. This is given in Algorithm 2.

A.2 Adamic-Adar Index

Let us assume that I is the set of node pairs that interact in time interval [t, t + 1], R be the set

of node pairs which had a link at time t but is removed at time (t + 1) and let S be the set of all

possible node pairs. The algorithm for updating the Adamic Adar Index is given in Algorithm 3

and 4.

A.3 Preferential Attachment Score

Let I be the set of node pairs that interact in time interval [t, t +1], R be the set of node pairs which

had a link at time t but do not at time (t +1), N be the set of all nodes, S be the set of all possible

55

Algorithm 2 Common Neighbor Score Update Algorithm
1: procedure COMMONNEIGHBORSCOREUPDATE(I)
2: for all (u,v) ∈ S do . Update all scores for decay
3: CN((u,v)|t +1) = δ ·CN((u,v)|t)
4: end for
5: for all (u,v) ∈ I do . Update for I
6: for all x ∈ (Γi(v|t +1)−{u}) do . Update CNo
7: if (u,v) /∈ Et then
8: CNo(u,x|t +1) =CNo(u,x|t +1)+0.5(1+w(x,v|t +1))
9: else

10: CNo(u,x|t +1) =CNo(u,x|t +1)+0.5
11: end if
12: end for
13: for all x ∈ (Γo(u|t +1)−{v}) do . Update CNi
14: if (u,v) /∈ Et then
15: CNi(x,v|t +1) =CNi(x,v|t +1)+0.5(1+w(u,x|t +1))
16: else
17: CNi(x,v|t +1) =CNi(x,v|t +1)+0.5
18: end if
19: end for
20: end for
21: for all (u,v) ∈ R do . Update for R
22: for all x ∈ (Γi(v|t)−{u}) do . Update CNo
23: CNo(u,x|t +1) =CNo(u,x|t +1)−0.5 ·δ ((w(u,v|t)+w(x,v|t))
24: end for
25: for all x ∈ (Γo(u|t)−{v}) do . Update CNi
26: CNi(x,v|t +1) =CNi(x,v|t +1)−0.5 ·δ (w(u,v|t)+w(u,x|t))
27: end for
28: end for
29: end procedure

56

Algorithm 3 out-Adamic Adar Index Update Algorithm
1: procedure OUTADAMICADARUPDATE(I)
2: for all (u,v) ∈ I do . Update for interactions
3: if (u,v) ∈ Et then
4: for all x ∈ Γi(v|t +1) do
5: AAo(u,x|t +1) = δ ·AAo(u,x|t)+ 1

2·log(∑z∈Γo(v|t+1)w(v,z|t+1))
6: end for
7: else
8: for all x ∈ Γi(v|t +1) do
9: AAo(u,x|t +1) = δ ·AAo(u,x|t)+ 1+δ ·w(a,v|t)

2·log(∑z∈Γo(v|t+1)w(v,z|t+1))
10: end for
11: end if
12: for all x,y ∈ Γi(u|t +1) do

13: AAo(x,y|t +1) = δ ·
(

w(x,u|t)+w(y,u|t)
log(∑z∈Γo(u|t+1)w(u,z|t+1))

− w(x,u|t)+w(y,u|t)
2·log(∑z∈Γo(u|t)w(u,z|t))

)
+δ ·AAo(a,b|t)

14: end for
15: end for
16: for all (u,v) ∈ R do . Update for removed links
17: for all x ∈ Γi(v|t +1) do
18: AAo(u,x|t +1) = δ ·AAo(u,x|t)− δ ·(w(u,v)+w(x,v|t)

2·log(∑z∈Γo(v|t)w(v,z|t))
19: end for
20: for all x,y ∈ Γi(u|t +1) do
21: AAo(a,y|t +1) = δ ·AAo(x,y|t)− δ ·(w(x,u|t)+w(y,u|t))

2·log(∑z∈Γo(u|t) w(u,z|t))
+ δ ·(w(x,u|t)+w(y,u|t))

2·log(∑z∈Γo(u|t+1) w(u,z|t+1))
22: end for
23: end for
24: for all (u,v) ∈ S do . Update all the remaining node pairs
25: if AAo(u,v|t +1) do not exist then
26: AAo(u,v|t +1) = δ ·AAo(u,v|t)
27: end if
28: end for
29: end procedure

57

Algorithm 4 in-Adamic Adar Index Update Algorithm
1: procedure INADAMICADARUPDATE(I)
2: for all (u,v) ∈ I do . Update for interactions
3: if (u,v) ∈ Et then
4: for all x ∈ Γo(u|t +1) do
5: AAi(v,x|t +1) = δ ·AAi(v,x|t)+ 1

2·log(∑z∈Γi(u|t+1)w(z,u|t+1))
6: end for
7: else
8: for all x ∈ Γo(u|t +1) do
9: AAi(v,x|t +1) = δ ·AAi(v,x|t)+ 1+δ ·w(u,a|t)

2·log(∑z∈Γi(u|t+1)w(z,u|t+1))
10: end for
11: end if
12: for all a,b ∈ Γo(v|t +1) do
13: AAi(a,b|t +1) = δ ·AAi(a,b|t)+ δ ·(w(v,a|t)+w(v,b|t))

log(∑z∈Γi(v|t+1)w(z,v|t+1))
− δ ·(w(v,a|t)+w(v,b|t))

2·log(∑z∈Γi(v|t)w(z,v|t))
14: end for
15: end for
16: for all (u,v) ∈ R do . Update for removed links
17: for all x ∈ Γo(u|t +1) do
18: AAi(v,x|t +1) = δ ·AAi(v,x|t)− δ ·(w(u,v)+w(v,x|t)

2·log(∑z∈Γi(u|t)w(z,u|t))
19: end for
20: for all x,y ∈ Γo(v|t +1) do
21: AAi(a,b|t +1) = δ ·AAi(a,b|t)− δ ·(w(v,a|t)+w(v,b|t))

2·log(∑z∈Γi(v|t) w(z,v|t))
+ δ ·(w(v,a|t)+w(v,b|t))

2·log(∑z∈Γi(v|t+1) w(z,v|t+1))
22: end for
23: end for
24: for all (u,v) ∈ S do . Update all the remaining node pairs
25: if AAi(u,v|t +1) do not exist then
26: AAi(u,v|t +1) = δ ·AAi(u,v|t)
27: end if
28: end for
29: end procedure

58

node pairs and SUMo(x|t) and SUMi(x|t) be the sum of the weights of the out-links and in-links of

node x. The algorithm for updating the Preferential Attachment Score is given in Algorithm 5.

Algorithm 5 Preferential Attachment Score Update Algorithm
1: procedure PREFERENTIALATTACHMENTUPDATE(I)
2: for all x ∈ N do
3: for all (u,v) ∈ I do . Update for node interactions
4: if (u,v) ∈ Et then
5: PFo(u,x|t +1) = δ 2 ·PFo(u,x|t)+ δ ·SUMo(x|t)

|Γo(u|t)|·|Γo(x|t)|

6: PFi(v,x|t +1) = δ 2 ·PFi(v,x|t)+ δ ·SUMi(x|t)
|Γi(v|t)|·|Γi(x|t)|

7: else
8: PFo(u,x|t +1) = |Γo(u|t)|

|Γu(u|t)|+1 ·δ
2 ·PFo(u,x|t)+ δ ·SUMo(x|t)

(|Γo(u|t)|+1)·|Γo(x|t)|

9: PFi(v,x|t +1) = |Γi(v|t)|
|Γi(v|t)|+1 ·δ

2 ·PFi(v,x|t)+ δ ·SUMi(x|t)
(|Γi(v|t)|+1)·|Γi(x|t)|

10: end if
11: end for
12: for all (u,v) ∈ R do . Update for links removed
13: PFo(u,x|t +1) = δ 2·|Γo(u|t)|·PFo(u,x|t)

|Γo(u|t)−1| − δ ·w(u,v|t)·SUMo(x|t)
(|Γo(u|t)|−1)·|Γo(x|t)|

14: PFi(v,x|t +1) = δ 2·|Γi(v|t)|·PFi(v,x|t)
|Γi(v|t)−1| − δ ·w(u,v|t)·SUMi(x|t)

(|Γi(v|t)|−1)·|Γi(x|t)|
15: end for
16: end for
17: for all (u,v) ∈ S do . Update all the remaining node pairs
18: if PFi(u,v|t +1) do not exist then
19: PFi(u,v|t +1) = δ 2 ·PFi(u,v|t)
20: end if
21: if PFo(u,v|t +1) do not exist then
22: PFo(u,v|t +1) = δ 2 ·PFo(u,v|t)
23: end if
24: end for
25: end procedure

A.4 Katz Score

Let I be the set of node pairs that interact in time interval [t, t +1], R be the set of node pairs that

had a link between them at time t but not at (t +1) and S be the set of all possible node pairs. The

algorithm for updating the Katz Score is given in Algorithm 6.

59

Algorithm 6 Katz Score Update Algorithm
1: procedure KATZUPDATE(I)
2: for all (u,v) ∈ I do . Update for interaction
3: if (u,v) ∈ Et then
4: KS(u,v|t +1) = δ ·KS(u,v|t)+β

5: for all x ∈ Γo(v) do
6: KS(u,x|t +1) = δ ·KS(u,x|t)+0.5 ·β 2

7: end for
8: for all x ∈ Γi(u) do
9: KS(x,v|t +1) = δ ·KS(x,v|t)+0.5 ·β 2

10: end for
11: for all y ∈ Γo(v) do
12: for all x ∈ Γi(u) do
13: KS(x,y|t +1) = δ ·KS(x,y|t)+ β 2

3
14: end for
15: end for
16: else
17: KS(u,v|t +1) = δ ·KS(u,v|t)+β

18: for all x ∈ Γo(v) do
19: KS(u,x|t +1) = δ ·KS(u,x|t)+β 2 · 1+δ ·w(v,x|t)

2
20: end for
21: for all x ∈ Γi(u) do
22: KS(x,v|t +1) = δ ·KS(x,v|t)+β 2 · 1+δ ·w(x,u|t)

2
23: end for
24: for all y ∈ Γo(v) do
25: for all x ∈ Γi(u) do
26: KS(x,y|t +1) = δ ·KS(x,y|t)+β 3 · 1+δ ·w(x,u)+δ ·w(v,y)

3
27: end for
28: end for
29: end if
30: end for

60

31: for all (u,v) ∈ R do . Update for removel of links
32: KS(u,v|t +1) = KS(u,v|t +1)−δ ·βw(u,v|t)
33: for all x ∈ Γo(v) do
34: KS(u,x|t +1) = KS(u,x|t +1)−δ ·β 2 · w(u,v|t)+w(v,x|t)

2
35: end for
36: for all x ∈ Γi(u) do
37: KS(x,v|t +1) = KS(x,v|t +1)−δ ·β 2 · w(u,v|t)+w(x,u|t)

2
38: end for
39: for all y ∈ Γo(v) do
40: for all x ∈ Γi(u) do
41: KS(x,y|t +1) = KS(x,y|t +1)−δ ·β 3 · w(u,v|t)+w(x,u)+w(v,y)

3
42: end for
43: end for
44: end for
45: for all (u,v)inS do . Update remaining node pairs
46: if KS(u,v|t +1) do not exist then
47: KS(u,v|t +1) = δ ·KS(u,v|t)
48: end if
49: end for
50: end procedure

A.5 Shortest Path Score

Let us assume that Ps(a) is the set of all nodes b such that there is a valid shortest path from a to b.

Also suppose that Pe(a) is the set of all nodes b such that there is a valid shortest path from b to a.

Let Q(u,v) be the set of all node pairs whose shortest paths passes through (u,v).

Let I be the set of node pairs that interact with each other in time interval [t, t +1], R be the set

of all node pairs which had a link at time t but not at time (t + 1) and S be the set of all possible

node pairs. The algorithm to update the Shortest Path Score is given in Algorithm 7.

A.6 Rooted PageRank

To update the Rooted PageRank we only need to recalculate the Rooted PageRank for the nodes

that are within a distance of lc from the nodes which interacted or which had links that are broken.

61

Algorithm 7 Shortest Path Score Update Algorithm
1: procedure SHORTESTPATHUPDATE(I,R)
2: for all (u,v) ∈ I do . Update for node interactions
3: for all x ∈ Pe(u) do
4: for all y ∈ Ps(v) do
5: if (u,v) ∈ Et then
6: SP(x,y|t +1) = δ ·SP(x,y|t)+ 1

|ρmin(x,y|t)|·lmin(u,v|t)
7: else
8: if lmin(x,y|t)≥ (lmin(x,u|t)+ lmin(v,y|t)+1) then
9: lmin(x,y|t +1)≥ lmin(x,u|t)+ lmin(v,y|t)+1

10: ρmin(x,y|t +1) = {ρmin(x,v|t)+(u,v)+ρmin(v,y|t)}
11: Recalculate SP(x,y|t +1) using ρmin(x,y|t +1)
12: Update Q(x,y)
13: end if
14: end if
15: end for
16: end for
17: end for
18: for all (u,v) ∈ I do . Update remaining node pairs
19: if SP(u,v|t +1) do not exist then
20: SP(u,v|t +1) = δ ·SP(u,v|t)
21: end if
22: end for
23: for all (u,v) ∈ R do . Update for link removal
24: for all (x,y) ∈ Q(u,v) do
25: SP(x,y|t +1) = |ρ(x,y|t)|

|ρ(x,y|t)|−1 ·SP(x,y|t +1)
26: for all p ∈ ρmin(x,y|t) do
27: if (u,v) ∈ p then
28: SP(x,y|t +1) = SP(x,y|t +1)−δ · ∑(a,b)∈p w(a,b|t)

(|ρ(x,y|t)|−1)·lmin(x,y|t)
29: ρ(x,y|t +1) = ρ(x,y|t)−{p}
30: end if
31: end for
32: Update Q(x,y) = Q(x,y)−{(x,y)}
33: end for
34: end for
35: end procedure

62

The algorithm to recalculate the Rooted PageRank is given in Algorithm 8

Algorithm 8 Rooted PageRank Update Algorithm
1: procedure PAGERANKUPDATE(I)
2: for all u ∈ N do
3: for all v ∈ D do
4: PR(u,v|t +1) =WeighedPageRank(u,v)
5: PR(v,u|t +1) =WeighedPageRank(v,v)
6: end for
7: end for
8: end procedure

B Run Time Analysis

B.1 Common Neighbor Score

Let us assume n is the number nodes, i is the average number of node pairs that interact in time

interval [t, t +1], r is the number of links that were broken on [t, t +1] and c is the average number

of common neighbors between two nodes.

Then the time it takes to calculate the common neighbor scores for all possible node pairs

using equation 12 and 13 is (c ·n2), and the time it takes to update the Common Neighbor Scores

for all possible node pairs using Algorithm 2 is n2 + 2 · c · (i+ r). For most real world networks,

n2 >> (i+ r) and n >> c. So, n2 >> 2 · c · (i+ r). The running time for Algorithm 2 can then be

approximated as O(n2).

B.2 Adamic-Adar Index

Let us assume n is the number nodes, i is the number of node pairs that interact in time interval

[t, t + 1], r is the number of links that were broken in time interval [t, t + 1] and g is the average

63

number of neighbors for a node.

Then the time it takes to calculate the Adamic Adar Index for all possible node pairs using

equation 25 and 26 is (gcn2).

If we use Algorithm 3 and 4, the time it takes to update the Adamic Adar Index for all possible

node pairs is (n2 +(i+ r) · (g+ g2)). For a sparse network, g is small, and we can choose the

time intervals such that the amount of changes in the network (i+ r) is not very high. Then,

n2 >> (i+ r)(g+ g2). So, the time it will take to run Algorithm 3 and 4 can be approximated as

O(n2).

B.3 Preferential Attachment Score

Let us assume n is the number nodes, g is the average number of neighbors for a node, r is the

number of links that were broken in in time interval [t, t +1] and i is the number of node pairs that

interact in time interval [t, t +1].

Then the time it takes to calculate the Preferential Attachment Score for all possible node pairs

using equation 17 and 18 is (2 ·g ·n2).

If we use Algorithm 5, the time it takes to update the Preferential Attachment Score for all

possible node pairs is n2+2 ·n ·g · (i+ r). The interval can be chosen such n > (i+ r). For a sparse

network, n >> g. So, the time it will take to run Algorithm 5 can be approximated as O(n2).

B.4 Katz Score

Let us assume n is the number nodes, g is the average number of neighbors for a node, r is the

number of node pairs that had a link between them in time t but not in (t +1) and i is the average

number of node pairs that interact in time interval [t, t +1].

64

Then the time it takes to calculate the Katz Score for all possible node pairs using equation 35

and paths of length three or less is (g3 ·n2).

If we use Algorithm 6, the time it takes to update the Katz Score for all possible node pairs is

n2 +(i+ r) · (2 ·g+g2).

The time interval can be chosen so that n >> (i+ r). And for a sparse network, n >> g. So,

for a real world network, the time n2 >> (i+ r) · (2 ·g+g2). So, the it will take to run Algorithm 6

can be approximated as O(n2).

B.5 Shortest Path Score

Let us assume n is the number nodes, p is the average number of nodes that can be reached from

each node, c is the average umber of paths of shortest length between two nodes, r be the number

of node pairs that had a link at time t but not at (t + 1) and i is the average number of node pairs

that interact in time interval [t, t +1].

Then the time it takes to calculate the Shortest Path Score for all possible node pairs using

equation 39 and paths of length three or less is c ·n3.

If we use Algorithm 6, the time it takes to update the Shortest Path Score for all possible node

pairs is (n2+(i+r) · p2). The time interval can be chosen such that (i+r) is small. And in a sparse

network, (n >> p). So, in a real world network, (n2 >> (i+ r) · p2). So, the running time of the

algorithm can be approximated as O(n2).

B.6 Rooted PageRank

Since the algorithm for calculating the Rooted PageRank between two nodes given in Algorithm 1

depends on random walk, it is difficult to calculate the running time for this algorithm. So, let us

65

assume that this running time is f .

If we are to calculate the Rooted PageRank for all node pairs at each time interval, the time it

will take is n2 · f .

If we calculate the Rooted PageRank for only the nodes that are in the set D. To calculate the

size of the set D, let us assume that each node has m neighbors on average. Then the size of the set

D is,

|D|< 2(i+ r) ·
(

mlc +mlc−1 + . . .+1
)

(172)

|D|< 2(i+ r) · (m−1)lc+1−1
m−2

(173)

Then the approximate time it will take to update the Rooted PageRank using Algorithm 8 is,

|D| ·n · f .

Since |D| ≤ n, Algorithm 8 will run in time less than n2 · f .

In most sparse networks, the average number of neighbors is low, and if we select lc ≤ 3,

|D| << n. So in real world networks, running time of the Algorithm 8 will be much lower than

n2 · f .

66

References

[1] David Liben-Nowell, Jon Kleinberg "The Link Prediction Problem in Social Networks" Jour-

nal of the American Society for Information Science and Technology, 2007.

[2] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, Mohammed Zaki "Link Prediction using

Supervised Learning" SIAM International Conference on Data Mining, 2011.

[3] Ryan N Lichtenwalter, Jake T Lussier, Nitesh V Chawla "New Perspectives and Methods in

Link Prediction" Proceeding of the 16th ACM, 2010

[4] Julia Preusse, JÃl’rÃt’me Kunegis, Matthias Thimm, Sergej Sizov "DecLiNe - Models for

Decay of Links in Networks", 2014

[5] Sitaram Asur, Bernardo A. Huberman, Gabor Szabo, Chunyan Wang âĂIJTrends in Social

Media : Persistence and DecayâĂİ Fifth International AAAI Conference on Weblogs and Social

Media, 2011

[6] Twitter Streaming API https://dev.twitter.com/streaming/overview

[7] Tom Fawcett "An Introduction to ROC Ananlysis" Pattern Recognition Letters, 2006

[8] M E J Newman "Clustering and Preferential Attachment in growing networks" Physical Re-

view Letters E, 64(025102), 2001

[9] Lada A Adamic, Eytan Adar "Friends and neighbors on the web" Social Networks, 2003

[10] A L Barabasi, H Jeong, Z Neda, E Ravasz, A Schubert, T Vicsek "Evolution of the social

network of scientific collaboration" Physica, 2002

[11] Leo Katz "A new status index derived from sociometric analysis" Psychometrika, 1953

[12] Sergey Brin, Larry Page "The anatomy of a large-scale hypertextual Web search engine"

Computer Networks and ISDN Systems, 1998

67

[13] Jure Leskovec, Jon Kleinberg, Christos Faloutsos "Graph Evolution: Densification and

Shrinking Diameters" ACM Transactions on Knowledge Discovery from Data, 2007

[14] Z. Lin, Z. Hao, X. Yang, X. Liu, "Several svm ensemble methods integrated with under-

sampling for imbalanced data learning" Proceedings of the 5th International Conference on

Advanced Data Mining and Applications, 2009

[15] P. Kang, S. Cho "Eus svms: ensemble of under-sampled svms for data imbalance problems"

Proceedings of the 13th international conference on Neural Information Processing, 2006

[16] Y. Liu, A. An, X. Huang "Boosting prediction accuracy on imbalanced datasets with svm

ensembles" Proceedings of the 10th Pacific-Asia conference on Advances in Knowledge Dis-

covery and Data Mining, 2006

[17] B. Wang, N. Japkowicz "Boosting support vector machines for imbalanced data sets" Knowl-

edge and Information Systems, 2010

[18] John C. Platt "Probabilistic Outputs for Support Vector Machines and Comparisons to Regu-

larized Likelihood Methods" Advances in Large Margin Classifiers, 1999

[19] David J Rogers, Taffee T Tanimoto "A Computer Program for Classifying Plants" Science,

1960

[20] MM Breunig, HP Kriegel, RT Ng, J Sander, "LOF: identifying density-based local outliers"

SIGMOD, 2000

[21] KL Li, HK Huang, SF Tian, W Xu "Improving one-class SVM for anomaly detection" Pro-

ceedings of the Second International Conference on Machine Learning and Cybernetics, 2003

68

Vita

Ricky Laishram received a Bachelor of Engineering in Electronics and Communication Engineer-

ing from Birla Institute of Technology in December 2010. In 2013, he joined the Master of Science

in Computer and Information Science program in Syracuse University.

69

	Link Prediction in Dynamic Weighted and Directed Social Network using Supervised Learning
	Recommended Citation

	tmp.1444251966.pdf.FfrlM

