
Link Prediction in Social Networks with Edge Aging

Ricky Laishram, Kishan Mehrotra, Chilukuri K. Mohan
Department of Electrical Engineering and Computer Science

Syracuse University, NY 13244-4100
Email: {rlaishra, mehrotra, mohan}@syr.edu

Abstract—In social networks that change with time, an im-
portant problem is the prediction of new links that may
be formed in the future. Existing works on link prediction
have focused only on networks where links are permanent,
an assumption that is not valid in many real world social
networks. In many real world networks, in addition to new
links being created, existing links also get removed. In this
paper, we extend existing link prediction methods and apply a
supervised learning algorithm to networks with non-permanent
links. The results we obtain on Twitter @-mention networks
show that our method performs very well in such networks.

Index Terms—Social Network, Link Prediction, Machine
Learning, Artificial Intelligence

1. Introduction

Social networks are extremely dynamic in nature. Two
basic changes can happen in a social network - addition or
removal of edges, and addition or removal of nodes. The
features that characterize the network change as a conse-
quence of these changes. In addressing the link prediction
problem, we model the evolution of links between the nodes
using features intrinsic to the network [1].

The study of link prediction in social networks is an
important research area with applications in various fields.
For example, social networking websites (such as Twitter,
Facebook and LinkedIn) can give more relevant friend sug-
gestions. In another important application, security agencies
can use knowledge of an existing network to predict links
and monitor future interactions between persons of interest
[2].

Many researchers have worked on this problem using
different approaches such as Markov chains [3], [4] and
statistical relational learning [5]. Liben-Nowell et al. [1]
approached the problem by relating link prediction and
various similarity measures. Subsequent works [6], [7] have
produced better results by using these similarity measures
and applying machine learning techniques.

Most of the previous works focused on networks whose
edges do not get deleted. However, in many real world
social networks, edges are not permanent [8], [9]. Studies by
Dunbar et al. [10] have found that, on average, an individual
has a conflict with a directly connected neighbor in the
network network every 7.2 months, resulting in the link

being broken. So, to apply link prediction methods to such
networks, we need to take into account these links that are
deleted.

Existing works [11], [12] on social networks with non-
permanent edges have considered the problem of creation
and removal of nodes in such social networks. In our work,
the focus is on link prediction and we assume that the set
of nodes remains unchanged [1].

The contribution of this paper is the development of
a link prediction method for social networks where edges
are not permanent; that is, in our network model edges can
either be created or deleted. This model attempts a more re-
alistic representation of a real world social network [8], [9],
[10]. In our model, each edge has a weight associated with
it. This weight decays over time and if it falls below a certain
threshold (θ), the edge is deleted. Interactions between nodes
results in the creation of new edges, or strengthens existing
edges. The feature scores (such as similarity measures, path
distance measures etc.) used for link prediction are modified
to take into account the edge weight. Finally, these feature
scores are used to train a supervised learning algorithm and
to predict the creation of edges.

Experiments using Twitter @-reply network [13] have
shown that our method performs significantly better than
existing methods. Our method produces results which are
consistently of high quality, with AUC in the range of 0.79
to 0.87. In comparison, the performance of other existing
methods varies widely, with AUC ranging from 0.53 to 0.83
depending on the network.

In Section 2, we discuss the network and model the
edge decay procedure. In Section 3, we extend the network
feature scores to take the edge weights into consideration.
The link prediction method is described in Section 4; in this
section we also discuss how the training and testing data are
generated, and how class imbalance is handled . We present
the experimental setup, results and analysis in Section 5
and 6. Finally, Section 7 presents concluding remarks.

2. Network Model

In this section, we describe the network model used in
our link prediction method. First we describe the edge aging
model that results in edge deletion.

In a social network, if an edge between nodes (u, v)
existed at time ti but no longer exists at some time tj , where

ti < tj , the edge (u, v) is said to have been deleted. If
the nodes u and v interact after the edge was deleted, it
will be created again. The term ”interact” is used in this
paper to mean an action between two nodes that results in
the formation of an edge between them or increases the
edge weight if an edge already exist. For example, in a
collaboration network, an interaction can be the action of
two researchers collaborating on a research project.

Research by Burt [14] has shown that there is a pattern
to the rate at which edges decay in a social network - new
edges decay faster and older edges decay slower. If δ (δ < 1)
is the decay rate (or decay factor) at time t = 0, the decay
rate at time t = T is given by, δT ∝ δT . This can also be
written as δT ∝ δ · δT−1.

We represent the edge weight of (u, v) at time t as
w(u, v, t), which represents the strength of the relationship
between the nodes. So, if w(u, v, t) > w(x, y, t), the node
pair (u, v) has a stronger relationship than (x, y), and the
relationship will survive longer than the one between x
and y [14]. The weight of an edge decreases with time
unless it is reinforced by an interaction. In the absence of
reinforcement, the weight decay is described as

w(u, v, t) = δ × w(u, v, t− 1).

The edge is deleted when the weight of the relationship
drops below a certain threshold, θ.

Given the network Gt = 〈V,Et〉 at time t, we describe
how to obtain Gt+1 = 〈V,Et+1〉. Between t and (t + 1)
some nodes interact with each other, represented by the set
of edges It,t+1. The set Et+1 is obtained from Et using the
following three steps:

1) Generate
Tt+1 = Et ∪ It,t+1

2) The weight of each link in Tt+1 is calculated to
incorporate the aging as well as reenforcement
represented by It,t+1:

w(u, v, t+ 1) ={
δ · w(u, v, t) + 1, if (u, v) ∈ It,t+1

δ · w(u, v, t), if (u, v) /∈ It,t+1

3) Edges with weight less than θ are removed from
Tt+1, resulting in Et+1.

This is a more realistic model of real world scenarios
than the ones used in earlier link prediction works, described
in Section 1. Many real world social networks have edges
that are not permanent, and work by Burt [14] has shown
that the edge decay process is a major cause of edge
deletion. In our network model, edges are added as a result
of interactions between nodes, and they can be deleted due
to edge aging.

3. Network Feature Scores

Work by Liben-Nowell et al. [1] has demonstrated
that feature scores based on node similarity and paths

are good predictors of links in unweighted networks.
Subsequent works [6], [7] have shown that using these
network feature scores with supervised learning provide
better predictions in unweighted networks with permanent
links. These feature scores are: Common Neighbor Score,
Preferential Attachment Score, Adamic-Adar Score, Katz
Score, Shortest Path Score and Rooted PageRank. In this
section we describe how these network feature scores are
updated for directed networks, accounting for edge weights.

Notation:

• The set of neighbors of a node u is represented by
Γ(u).

• In a directed network, a node u has two types of
neighbor sets - neighbors with links that are directed
away from u, represented by Γo(u), and neighbors
with links that are directed towards u, represented
by Γi(u).

• We represent the definitions for the incoming and
outgoing links using one equation with subscript α
that takes two values – o and i.

• The set of paths of length l from node u to v is
denoted as ρ(u, v|l).

In the following subsections we describe extensions of var-
ious feature scores for weighted and directed networks.

3.1. Weighted Common Neighbor Score

In an undirected unweighted network, the Common
Neighbor Score [15] of (u, v) is given by CN(u, v) =
|Γ(u) ∩ Γ(v)|. To account for edge weights, this score is
modified to:

CNw(u, v) =
∑

z∈(Γ(u)∩Γ(v))

w(u, z) + w(v, z)

2

In the case of directed networks, we have two common
neighbor scores based on Γo and Γi. These Common Neigh-
bor Scores are given by:

CNα(u, v) = |Γα(u) ∩ Γα(v)|

for α = i, o.
For directed weighted networks, for α = i, o, these

scores are:

CNw
α (u, v) =

∑
z∈(Γα(u)∩Γα(v))

w(z, u) + w(z, v)

2
(1)

3.2. Weighted Preferential Attachment Score

In an undirected network, the Preferential Attachment
Score [16] is:

PA(u, v) = |Γ(u)| · |Γ(v)|

a

v

b

c

d

f

g

h

e

i
j

u

Figure 1. An example graph

In a directed network, the two Preferential Attachment
Scores are:

PAα = |Γα(u)| · |Γα(v)|

We can incorporate the edge weights into the Preferential
Attachment Scores using the average weights of the edges
to the neighboring nodes. For an undirected network,

PAw(u, v) =

∑
z∈Γ(u) w(u, z)

|Γ(u)|
·
∑
z∈Γ(v) w(v, z)

|Γ(v)|
and for a directed network,

PAwα (u, v) =

∑
z∈Γα(u) w(z, u)

|Γα(u)|
·
∑
z∈Γα(v) w(z, v)

|Γα(v)|

3.3. Weighted Adamic-Adar Score

For an undirected network, the Adamic-Adar Score [17]
is:

AA(u, v) =
∑

z∈(Γ(u)∩Γ(v))

1

log|Γ(z)|

For a directed network, it is:

AAα(u, v) =
∑

z∈(Γα(u)∩Γα(v))

1

log|Γα(z)|

To account for edge weights in the Adamic-Adar Score
the neighbor counts are replaced by the sum of the edge
weights. To illustrate this modification, consider the simple
directed network in Fig. 1 in which we attempt to eval-
uate AAwo (u, v). Since, Γo(u) ∩ Γo(v) = {d, e} we need
evaluation of the contributions of nodes d and e towards
AAwo (u, v),

γ(d) =
1

log (w(d, f) + w(d, g) + w(d, h))

and

γ(e) =
1

log (w(e, i) + w(e, j))

respectively. Towards the final value of AAwo (u, v) these
contributions of γ(d) and γ(e) must take into account the
average weights of the links to d and e respectively. Thus,

AAwo (u, v) =
w(u, d) + w(v, d)

γ(d)
+
w(u, e) + w(v, e)

γ(e)
(2)

Equation 2 is generalized as follows:

AAwo (u, v) =
∑

z∈(Γo(u)∩Γo(v))

w(u, z) + w(v, z)

log
(∑

x∈Γo(z) w(z, x)
)

Similarly, we can can derive the equation for AAwi (u, v).
In the case of a weighted undirected network, we obtain:

AAw(u, v) =
∑

z∈(Γ(u)∩Γ(v))

w(u, z) + w(v, z)

log
(∑

x∈Γ(z) w(z, x)
)

3.4. Weighted Katz Score

The Katz Score [18] is based on the paths between two
nodes. In an unweighted network, it is given by:

KS(u, v) =

∞∑
l=1

(
βl · |ρ(u, v|l)|

)
where β is the damping factor (0 ≤ β ≤ 1).
To take the edge weights into consideration, consider the

network in Fig 1 as an example again. The set of paths from
u to v are:

ρ(u, v|1) = ∅

ρ(u, v|2) = {{(u, b), (b, v)}, {(u, c), (c, v)}}

ρ(u, v|3) = {{(u, b), (b, a), (a, v)}}
To take the edge weights into consideration, we will

use the sum of average edge weights of each path instead
of simply taking the path length. Then the contribution of
each path set towards KSw(u, v) is:

η(1) = β1 · 0

η(2) = β2 ·
(
w(u, b) + w(b, v)

2
+
w(u, c) + w(c, v)

2

)

η(3) = β3 ·
(
w(u, b) + w(b, a) + w(a, v)

3

)
The Katz Score from node u to v is then given by:

KSw(u, v) = η(1) + η(2) + η(3) (3)

Equation 3 can be generalized to give us the Weighted
Katz Score:

KSw(u, v) =

∞∑
l=1

βl ·
∑

p∈ρ(u,v|l)

∑
(x,y)∈p w(x, y)

l

3.5. Weighted Shortest Path Score

In an undirected and unweighted network, the Shortest
Path score of (u, v) is simply the reciprocal of the length of
the shortest path from u to v. To illustrate extension of the
Shortest Path Score to weighted and directed network, we
consider the network in Fig. 1. In this network, the length
of the shortest path from u to v is 2 and the associated set
of paths of length 2 = lmin is,

ρ(u, v|2) = {{(u, b), (b, v)}, {(u, c), (c, v)}}

Associated with these two paths the set of average link
weights is:

ρ(u, v|2) =

{
w(u, b) + w(b, v)

2
,
w(u, c) + w(c, v)

2

}
The Shortest Path Score of (u, v) is then given by the

average of the elements of the set ρ(u, v|2),

SPw(u, v) =
(w(u, b) + w(b, v) + w(u, c) + w(c, v))

4
(4)

Equation 4 can be generalized as follows:

SPw(u, v) =

∑
p∈ρ(u,v|lmin)

∑
(x,y)∈p w(x, y)

lmin · |ρ(u, v|lmin)|

3.6. Weighted Rooted PageRank

Nowell et al. [1] proposed an adaptation of the PageRank
measure [19] called Rooted PageRank. In the Rooted PageR-
ank algorithm, we start a random walk starting from a “root”
node. At each step, there is an α probability of the walk
resetting and returning to the root node. The random walk
assumes that all neighboring nodes are equally important,
and are selected uniformly at random.

As described in Section 2, not all edges are equal in a
network that follows the edge aging model. So, we need
to modify the part of the Rooted PageRank algorithm that
handles the selection of the next node. Edges that have
higher weights should have higher probability of being
“walked” compared to edges that have lower weight.

Assume that we are currently at node u, for any node
x ∈ Γo(u), the probability of the random walk selecting x
in the next step is given by:

p(x) =
w(u, x)∑

z∈Γo(u) w(u, z)
(5)

If we are dealing with an undirected network, we simply
need to replace Γo(u) by Γ(u) in Equation 5.

4. Link Prediction Method

In this section, we describe our link prediction method
in terms of a classification problem. In the next two subsec-
tions, we describe the training data and testing data, and how
class imbalance is handled. Finally, we highlight some of the
key differences between our method and existing methods.

Link prediction can be approached as a classification
problem using supervised learning [6], [7]. To apply super-
vised learning to link prediction, the network feature scores
are considered as the feature vectors, and a node pair (u, v)
is considered to be in the positive class if there is an edge
between them and in the negative class if there is no edge.

Let G1, G2 and G3 be three snapshots of the network at
time t1, t2 and t3, respectively, such that t1 < t2 < t3. We
calculate the training data Ftrain from the snapshot G1, and
the class labels for the training feature vectors Ctrain from
the snapshot G2. Performance of the trained algorithm is
measured using the testing feature vectors, Ftest, calculated
from G2 to predict the links in G3.

To clarify the selection of the training and testing set,
if we represent a feature score i between nodes u and v in
snapshot Gk by si(u, v,Gk), and the set of all nodes in the
network by V , then

Ftrain = {(s1(u, v,G1), s2(u, v,G1), . . . , sn(u, v,G1))

| ∀(u, v) : (u ∈ V ∧ v ∈ V ∧ u 6= v)}

Ftest = {(s1(u, v,G2), s2(u, v,G2), . . . , sn(u, v,G2))

| ∀(u, v) : (u ∈ V ∧ v ∈ V ∧ u 6= v)}

Ctrain = {class(u, v,G2) | ∀(u, v) :

(u ∈ V ∧ v ∈ V ∧ u 6= v)}

where Ek is the set of edges associated with graph Gk and

class(u, v,Gk) =

{
1, if (u, v) ∈ Ek
0, if (u, v) /∈ Ek

In a graph, the maximum number of potential edges
increases quadratically with the number of nodes. However,
the number of edges in most real world networks is much
smaller. So, the size of the positive class will be much
smaller than that of the negative class.

Prior work on classification of extremely imbalanced
data [20] has shown that good results can be obtained
by using an ensemble of Support Vector Machine (SVM)
classifiers trained with the minority class (in our case the
positive class) and different samples of the majority class.

In the work reported here, we have used SVM to fa-
cilitate better comparison with the previous works, since
most of them also use SVM. We note that machine learning
algorithms other than SVM can also be used.

Suppose the training data is Dtrain. Consider its two
components D+ and D− associated with the positive and
negative class respectively, where |D−| >> |D+|. We
implement the proposed ensemble approach as described
below:

1) To use an ensemble of n SVM classifiers, n samples
[S1, S2, . . . Sn] each of size |D+|, are taken from
D− without replacement.

2) For i = 1, 2, . . . , n, we train the classifier Mi

using the sample Si and D+, and class membership
represented by 1 for D+ and 0 for Si.

3) Let Pi consist of the predictions by classifier
Mi, i = 1, 2, . . . , n.

4) The predictions P1, P2, . . . Pn are combined using
majority voting to generate the final prediction P .

P (u, v) =

1 if
(

n∑
i=1

Pi(u, v)

)
> n/2

0 otherwise

In our method, a new edge is predicted between two
nodes u and v if there was no edge between them in G2 and
P (u, v) = 1, that is (class(u, v,G2) = 0) ∧ (P (u, v) = 1).

There are three main differences between our method
and existing methods that use supervised learning:

1) The use of three snapshots in our method is dif-
ferent from the earlier works which use two snap-
shots. In our method, G3 is completely unknown
to the classification algorithm, and it is used only
as ground truth for evaluation. In previous methods
that use only two snapshots, the testing data is gen-
erated from the second snapshot, which is method-
ologically problematic since it can be argued that
testing data was known during the training process.

2) Another difference between earlier methods and our
method arises due to the fact that edges can be
deleted in our network. In previous works, edges
are permanent. So, the node pairs that already have
an edge between them during the training period
are not included in the testing data. As a result,
the earlier methods have a testing data set that is
smaller than the training data set. In our case, edges
in the training period could be deleted in the testing
period. So, we cannot remove them, and the testing
data set and training data set have the same size in
our method.

3) As described in Sections 2 and 3, the network
model used in our method incorporates edge ag-
ing. So, the feature scores we use in our method
depend on edge weights, whereas the feature scores
in earlier methods do not take edge aging into
consideration.

5. Experimental Setup

This section describes how the experimental simulations
were carried out to test our method. The first subsection

describes the dataset used for simulations. In the next sub-
section, we describe the sampling approach used..

5.1. Data set

We use the Twitter @-mention network to test our
method. This network was obtained from the Twitter
Streaming API [13] by observing it for 28 days. It contains
approximately 105 nodes and 1.3×107 interactions between
the nodes. Interactions are tweets from one twitter user to
another using the @-username convention. In this network,
each time step is one hour.

In this network, nodes represent the users, and there is
an edge from node u to v if u sends a tweet mentioning v.
Since the tweet is one way, the network is directed.

In the analysis presented below, edges are deleted using
the edge aging model described in Section 2. The parameters
for edge aging are: δ = 0.9 and θ = 0.2. These values were
determined empirically.

To apply our link prediction method, the snapshots
G1 = 〈V,E1〉, G2 = 〈V,E2〉 and G3 = 〈V,E3〉 are taken at
time t1 = 336 hours, t2 = 504 hours and t3 = 672 hours,
respectively.

5.2. Data sampling

Since the network has approximately 105 nodes, the
maximum number of potential edges is roughly 1010.
It is computationally very expensive to execute the
link prediction algorithm over the entire network. So,
we reduce the number of potential edges by selecting
fifteen samples of node sets. Five of these samples
(V 500

1 , V 500
2 , V 500

3 , V 500
4 , V 500

5) consist of 500 nodes each.
Another five samples (V 1000

1 , V 1000
2 , V 1000

3 , V 1000
4 , V 1000

5)
have 1000 nodes each, and the remaining five
(V 1500

1 , V 1500
2 , V 1500

3 , V 1500
4 , V 1500

5) consist of 1500
nodes each.

Nodes whose graph distances are smaller are more likely
to form an edge between them compared to those which are
very far away [21], [7]. Hence nodes for each of the sample
sets are selected using a random walk [22] starting from a
random seed node.

6. Results and Analysis

We are not aware of any works on link prediction on
networks where edges are non-permanent. Hence a modified
version of the supervised link prediction methods by Al
Hasan et al. [6], which assumes equal weights for all edges,
is used as a baseline with which to compare the performance
of our method. It should be noted here that Al Hasan’s
method uses some features that do not depend on the
network structure (such as similarity in papers published).
Such features are not considered here.

We denote the predictions made with the baseline
method for sample i by Qi, and made by our method by
Pi.

(a) ROC for V 500
1 (b) ROC for V 500

2 (c) ROC for V 500
3 (d) ROC for V 500

4

(e) ROC for V 500
5 (f) ROC for V 1000

1 (g) ROC for V 1000
2 (h) ROC for V 1000

3

(i) ROC for V 1000
4 (j) ROC for V 1000

5 (k) ROC for V 1500
1 (l) ROC for V 1500

2

(m) ROC for V 1500
3 (n) ROC for V 1500

4 (o) ROC for V 1500
5

Figure 2. ROC curve comparison between our method and baseline method for the different samples. The red solid lines represent the ROC of our method
and the blue dashed lines represent that of the baseline method.

In the datasets with imbalanced classes, the area under
curve (AUC) of the receiver operating curve (ROC) is a
better measure of performance than accuracy [23], [24].
So the prediction made using our method Pi is compared
against the baseline method Qi using the AUC. The AUCs
of our method (Pi) and the baseline (Qi) for all the fifteen
samples are given in Table 1.

The ROCs for the fifteen samples are shown in Fig.
2. In the figures, the red solid lines represent the ROC
curve obtained using our method, and the blue dashed lines
represent that of the baseline method. It can be observed
that our method outperforms the baseline in all the cases -

and in some cases (Fig 2a, 2d, 2h, 2i and 2l) our method
outperforms the baseline by a very large margin.

Fig 3 shows the box-plot of the AUC of our method
against the baseline method for different sample sizes. The
comparison for the samples with size 500, 1000 and 1500
are shown in Fig 3a, 3b and 3c respectively.

From the box-plot comparison (Fig 3), it can be observed
that the median AUCs of our method are 0.82, 0.83 and 0.82
for the samples with 500, 1000 and 1500 nodes respec-
tively; and for the baseline, they are 0.74, 0.64 and 0.73
respectively. Thus our method has the better median AUC
performance than the baseline.

(a) AUC comparison for samples with 500
nodes

(b) AUC comparison for samples with 1000
nodes

(c) AUC comparison for samples with 1500
nodes

Figure 3. Box-plot comparison between the AUC-ROC of our method against the baseline method for different sample sizes.

TABLE 1. AUC COMPARISON BETWEEN PREDICTION USING OUR
METHOD Pi AND THE BASELINE METHOD Qi

Sample AUC of Qi AUC of Pi

V 500
1 0.53 0.79

V 500
2 0.83 0.87

V 500
3 0.74 0.82

V 500
4 0.52 0.77

V 500
5 0.78 0.83

V 1000
1 0.64 0.83

V 1000
2 0.77 0.89

V 1000
3 0.59 0.80

V 1000
4 0.59 0.76

V 1000
5 0.66 0.83

V 1500
1 0.76 0.78

V 1500
2 0.80 0.82

V 1500
3 0.56 0.85

V 1500
4 0.67 0.74

V 1500
5 0.73 0.71

It can also be observed that the Inter-Quartile Range
(IQR) of our method is much smaller compared to the base-
line. The IQRs of our method are 0.07, 0.08 and 0.1 for the
samples with 500, 1000 and 1500 nodes respectively. For
the baseline method, these values are 0.28, 0.13 and 0.17
respectively. This shows that performance of our method is
very consistent compared to the baseline regardless of the
sample size.

7. Conclusion

Link prediction for networks where edges are non-
permanent has not been investigated before. Many such
networks exist in the real world [10], [25]. To account
for this, we used a network model (Section 2) in which
edges can be created or deleted. We updated the network
feature scores (Section 3) to apply to our network model.
This meant taking the edge weights into consideration while
calculating the feature scores. Finally, we use these feature
scores to train a classifier as described in Section 4 and
predict presence or absence of links between nodes in the
next network snapshot.

The experimental results in Section 6 show that the
method we propose in this paper achieves very good per-
formance regardless of the sample size. The AUC of our
method is consistently around 0.80 for all fifteen samples
we tested on. Compared to the baseline algorithm, for which
the AUC varies from 0.53 to 0.83, our method performs very
well.

It is also worth noting that the feature scores in our
method depend on only the network topology. We do not
use any domain knowledge or feature scores external to the
network. Hence it can be applied easily to other networks
that have non-permanent edges.

An area worth further investigation is to extend this
method to use more than three network snapshots. If we
increase the number of snapshots, the data could potentially
provide us with a more detailed picture of how the network
evolves. This might provide more insight that will be helpful
in link prediction. Another new application area is link
prediction in multi-layer social networks with two types of
links: inter-layer links and intra-layer links.

References

[1] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American society for information
science and technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[2] V. E. Krebs, “Mapping networks of terrorist cells,” Connections,
vol. 24, no. 3, pp. 43–52, 2002.

[3] R. R. Sarukkai, “Link prediction and path analysis using markov
chains,” Computer Networks, vol. 33, no. 1, pp. 377–386, 2000.

[4] B. Taskar, M.-F. Wong, P. Abbeel, and D. Koller, “Link prediction
in relational data,” in Advances in neural information processing
systems, p. None, 2003.

[5] A. Popescul and L. H. Ungar, “Statistical relational learning for link
prediction,” in IJCAI workshop on learning statistical models from
relational data, vol. 2003, Citeseer, 2003.

[6] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction
using supervised learning,” in SDM 06: Workshop on Link Analysis,
Counter-terrorism and Security, 2006.

[7] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspec-
tives and methods in link prediction,” in Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 243–252, ACM, 2010.

[8] J. Preusse, J. Kunegis, M. Thimm, and S. Sizov, “Decline–models for
decay of links in networks,” arXiv preprint arXiv:1403.4415, 2014.

[9] S. Asur, B. A. Huberman, G. Szabo, and C. Wang, “Trends in social
media: Persistence and decay,” Available at SSRN 1755748, 2011.

[10] R. Dunbar and A. Machin, “Sex differences in relationship conflict
and reconciliation,” Journal of Evolutionary Psychology, vol. 12,
no. 2-4, pp. 109–133, 2014.

[11] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Microscopic
evolution of social networks,” in Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 462–470, ACM, 2008.

[12] S. Wu, A. Das Sarma, A. Fabrikant, S. Lattanzi, and A. Tomkins,
“Arrival and departure dynamics in social networks,” in Proceedings
of the sixth ACM international conference on Web search and data
mining, pp. 233–242, ACM, 2013.

[13] “Twitter streaming api.”

[14] R. S. Burt, “Decay functions,” Social networks, vol. 22, no. 1, pp. 1–
28, 2000.

[15] M. E. Newman, “Clustering and preferential attachment in growing
networks,” Physical Review E, vol. 64, no. 2, p. 025102, 2001.

[16] A.-L. Barabâsi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and
T. Vicsek, “Evolution of the social network of scientific collabora-
tions,” Physica A: Statistical mechanics and its applications, vol. 311,
no. 3, pp. 590–614, 2002.

[17] L. A. Adamic and E. Adar, “Friends and neighbors on the web,”
Social networks, vol. 25, no. 3, pp. 211–230, 2003.

[18] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: bringing order to the web.,” 1999.

[20] Y. Liu, A. An, and X. Huang, “Boosting prediction accuracy on
imbalanced datasets with svm ensembles,” in Advances in Knowledge
Discovery and Data Mining, pp. 107–118, Springer, 2006.

[21] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world
networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[22] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 631–636, ACM, 2006.

[23] N. V. Chawla, Data Mining and Knowledge Discovery Handbook,
ch. Data Mining for Imbalanced Datasets: An Overview, pp. 853–
867. Boston, MA: Springer US, 2005.

[24] T. Fawcett, “An introduction to roc analysis,” Pattern recognition
letters, vol. 27, no. 8, pp. 861–874, 2006.

[25] Y. Murase, H.-H. Jo, J. Török, J. Kertész, and K. Kaski, “Modeling the
role of relationship fading and breakup in social network formation,”
arXiv preprint arXiv:1505.00644, 2015.

