
Crawling the Community Structure of Multiplex Networks

Ricky Laishram
Syracuse University
Syracuse NY, USA
rlaishra@syr.edu

Jeremy D. Wendt
Sandia National Laboratories

Albuquerque, NM, USA
jdwendt@sandia.gov

Sucheta Soundarajan
Syracuse University
Syracuse NY, USA
susounda@syr.edu

Abstract

We examine the problem of crawling the community structure
of a multiplex network containing multiple layers of edge rela-
tionships. While there has been a great deal of work examining
community structure in general, and some work on the prob-
lem of sampling a network to preserve its community structure,
to the best of our knowledge, this is the first work to consider
this problem on multiplex networks. We consider the specific
case in which the layers of a multiplex network have different
query (collection) costs and reliabilities; and a data collector is
interested in identifying the community structure of the most
expensive layer. We propose MultiComSample (MCS), a novel
algorithm for crawling a multiplex network. MCS uses multi-
ple levels of multi-armed bandits to determine the best layers,
communities and node roles for selecting nodes to query. We
test MCS against six baseline algorithms on real-world multi-
plex networks, and achieved large gains in performance. For
example, after consuming a budget equivalent to sampling
20% of the nodes in the expensive layer, we observe that MCS
outperforms the best baseline by up to 49%.

1 Introduction
In this paper, we examine the problem of collecting data by
crawling a multiplex network, in which different types of
edges represent different types of relationships, with the end
goal of finding the community structure in a layer of interest.
In particular, we consider the case where one can query nodes
to obtain some or all of their neighbors (e.g., through an API),
but queries on the layer of interest are costly (in terms of time,
money, or resources) relative to other layers.

A multiplex network is a type of multilayer network where
the nodes participate in multiple types of interactions, or
layers (Mucha et al. 2010; Lee, Min, and Goh 2015). For
example, communication between a group of people can be
represented as a multiplex network, where the different layers
represent the modes of communication – email, face-to-face,
phone calls, etc. In order to study the community structure of
such networks, one must first collect appropriate data, usually
through a network crawling algorithm. For optimal analysis
results, the sample that the algorithm generates should be
representative of the community structure of the original
network.

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Collecting data from multiplex networks is a practical and
important problem, and raises challenges that one does not en-
counter in the single-layer case. In particular, data collection
costs are unlikely to be uniform across layers: for example,
when observing a ‘dark’ criminal network, family relation-
ships may be easily obtained, but face-to-face interactions
are much harder to observe. Additionally, certain layers may
be more reliable than others: for example, individuals will
likely not recall all of their personal interactions, but may
keep a complete record of their e-mail communications. Most
existing work on network data collection focuses on only one
type of interaction, or aggregate multiple types of interactions
into one, discarding potentially useful information.

We consider two problem settings based on the query re-
sponse. In the Reliable Query Response (RQR) model, we
assume that when a node is queried in a particular layer, we
obtain all of its neighbors in that layer. In the Unreliable
Query Response (UQR) model, when we query a node, each
neighbor has some probability of being excluded.

The challenges associated with this problem are: (1) The
layer of interest is costly to explore, so queries on this layer
must be made wisely. (2) The network can be explored only
through crawling. Thus, we do not know the true properties of
many nodes. (3) Initially, none of the layers are fully explored.
Hence, one must balance the trade-off between exploring a
cheap layer, which may or may not be correlated with the
expensive layer, vs. querying the expensive layer.

We propose MultiComSample (MCS), a multi-armed
bandit-based algorithm that uses queries on the cheaper layers
to guide a network crawler in exploring the more expensive
layer of interest. With a budget equivalent to sampling 20%
of the nodes, MCS outperforms the best baseline by up to
25% in the case of RQR, and 49% for UQR.

The main contributions of this paper are:

1. To the best of our knowledge, we are the first to consider
the problem of crawling a multiplex network with the
goal of generating a sample that is representative of the
underlying community structure of the layer of interest.

2. We propose MCS, a novel sampling algorithm for crawling
the community structure of multi-layer networks.

3. We perform extensive evaluations, and demonstrate that
MCS outperforms a wide variety of baseline algorithms in
crawling the community structure of the layer of interest.

2 Related Works

There has been a significant amount of work on community
detection in single layer networks (Fortunato 2010; Girvan
and Newman 2002; Blondel et al. 2011), but comparatively
little for the case of multilayer networks. One reason for
this is that generalizing single layer community detection
methods to the multilayer setting is often nontrivial (Kivelä et
al. 2014). A huge problem in the development of a community
detection algorithm is the lack of a null model that takes the
inter-layer edges into consideration. Thus, most work has
been on special types of multilayer networks.

Mucha et al. (Mucha et al. 2010) generalized commu-
nity detection methods to a special class of multilayer net-
works called multi-slice networks, by generalizing mod-
ularity to consider node-tuple pairs. Tang et al. (Tang,
Wang, and Liu 2009) approached the problem of com-
munity detection in multi-dimensional networks by apply-
ing multi-objective optimization to maximize modularity.
Other works begin with community detection in the in-
dividual layers (Barigozzi, Fagiolo, and Mangioni 2011;
Berlingerio, Pinelli, and Calabrese 2013). Berlingerio et al.
(Berlingerio, Pinelli, and Calabrese 2013) defined a multiplex
community as a closed frequent item-set where each item is
a tuple of the layer and the community assigned to the node.

In this paper, we are concerned only with communities in
individual layers. Thus, while the works by (Barigozzi, Fagi-
olo, and Mangioni 2011; Berlingerio, Pinelli, and Calabrese
2013) are related, they are not directly applicable. Moreover,
these works do not discuss crawling, but instead describe
techniques for finding communities in an existing network.

Crawling single layer networks has been extensively stud-
ied. In particular, when the network is too large to analyze
as a whole, a sample of the original network is usually used.
Maiya et al. (Maiya and Berger-Wolf 2010) have worked
on the problem of generating a sample of a network that
is representative of the community structure of the original
network. This method, however, downsamples from a fully-
known original network, rather than crawling an unobserved
network. Domenico et al. (De Domenico et al. 2014) have
explored the effect of performing a random walk on a multi-
plex network. They discovered that multiplex networks can
be more efficiently explored by random walk compared to
single layers. In this work, they assume that the different
layers have the same cost of exploration. Wendt et al. (Wendt
et al. 2016) analyzed the problems associated with generating
a multiplex sample when the layers have different costs. They
explored the Twitter multiplex network through API queries,
and observed that naive algorithms like BFS produces sam-
ples in which the inter-layer correlations are affected.

The major difference between our work and existing work
is that our objective is not to find the communities, but rather
to develop an algorithm to explore a multiplex network such
that we can obtain a sample that is representative of the
community structure of a layer of interest. As such, we deal
with missing information in our work, and as far as we know
no other research on multiplex (or multilayer) networks has
addressed this specific problem.

Notation Description
Lx = 〈V,Ex〉 Layer x in the original network
LSx = 〈V S , ESx 〉 Sample of Lx after S units of budget used
Kx True communities in Lx
KS
x Observed communities in LSx

Ψ(·, ·) Community similarity between X and Y
Qx Set of nodes queried in Lx
Γ(u, Lx) Neighbors of u in layer Lx
Γ′(u, Lx) Neighbors of u in layer Lx returned in UQR
cx Cost of a query in Lx
cΣ Sum of cx for all layers
C Sequence of query costs during sampling
Bx Budget allocated for layer x
B Total budget allocated
βux Uncertainty factor of u in Lx
(βµx , β

σ
x) Uncertainty factor of Lx

∆x,y Community update distance of x w.r.t. y
Λx,y Edge overlap of x w.r.t. y

Table 1: Notations used in this paper.

3 Problem Definition
Let M = 〈L0, . . . , Ll〉 be a multiplex network where Li =
〈V,Ei〉 are the individual layers. The layers corresponds to
various types of interaction, and have different exploration
or query costs. (For example, in the Twitter network, layers
correspond to interactions such as friends, mentions, and
replies; each of which has a different API rate limit1.) Under
these conditions, if we have a limited budget (time, money
etc.) and want to generate a sample that is representative of
the community structure of a layer of interest how can we
select the best nodes to query?

Assume that initially, we know V ′ ⊂ V such that |V ′| �
|V |, and we want to find the community structure in the layer
of interest, L0. Initially, no edges are known; the nodes in
V ′ serve only as starting points to begin exploration. Also
assume that the similarity between the true and observed
communities of L0 is measured with Ψ

(
KS

0 ,K0

)
(Table 1).

We assume that the network can be explored only through
crawling2; i.e., we can query for neighbors of a node that has
already been observed. Each query is performed on a node
specifying a particular layer; and returns some or all of the
neighbors of that node in the specified layer.

We consider the following problem: Given an initial set
of nodes V ′, query budget B, and layer of interest L0, how
can we sample M through crawling so that Ψ(KB

0 ,K0) is
maximized without exceeding the given query budget?

In this paper, we consider only the scenario where L0 is the
most expensive layer to query; if this were not the case, we
could ignore the more expensive layers in favor of querying
L0 directly. We also make the assumption that the edges
are undirected; otherwise, we can extend as demonstrated in
(Laishram, Areekijseree, and Soundarajan 2017).

We consider two types of responses in return to a neigh-
borhood query on a node:

Reliable Query Response: In RQR, a query for the neigh-
bors of node in a particular layer returns all neighbors of that

1We can query the friends layer 15 times every 15 minutes, but
for the mention and reply layers, the API allows 1500 queries every
15 minutes

2This is a common constraint in many real world networks.

node in that layer. This is generally the case when we have
a database to query against, and information is accurately
available. For example, in an email communication network,
we can lookup all the email communications of a node3.

Unreliable Query Response: In the case of UQR, there is
a node uncertainty factor (βux) associated with node u in layer
Lx. A query on u in layer Lx returns Γ′(u, Lx) ⊆ Γ(u, Lx)
where for every v ∈ Γ(u, Lx), there is a probability βux that
v ∈ Γ′(u, Lx). As an example, if we interview people to
gather data of face-to-face communication, it is unlikely that
everyone will remember all of their interactions.

We assume that for each layer Lx, the node uncertainty fac-
tor follows a normal distribution with mean βµx and standard
deviation βσx . We refer to (βµx , β

σ
x) as the layer uncertainty

factor. These uncertainty values are not known beforehand.

4 Methodology
In this section, we describe MultiComSample (MCS), a novel
multi-armed bandit algorithm for crawling multiplex net-
works. We first consider the case of RQR, and in Section 4.5,
we discuss modifications to handle the case of UQR.
MCS consists of two stages – sampling layers Lx∈(0,l]

through a random walk (RNDSample) to get LSx∈(0,l], and
using this information, sampling the layer of interest L0 with
a multi-armed bandit method (MABSample). We describe
the RNDSample stage in Section 4.1 and the MABSample
stage in Section 4.2. In Section 4.3 we describe how we bring
together these components in MCS.

In MCS, we use three bandits to make the selection on
which node to query in L0. The first bandit, LBandit, se-
lects which layer’s information to use to guide the node
selection in L0. Each layer is associated with two additional
bandits: CBandit, which selects a community in the layer,
and RBandit which selects a structural role (e.g., high de-
gree nodes) in the community.

4.1 Random Sampling on Lx∈(0,l] (RNDSample)
Random walks have been used extensively to discover
community structure in single-layer networks (Rosvall and
Bergstrom 2008). Thus, in this stage, we use a random walk
to separately crawl each of the layers in the network.

We allocate a small amount of budget Bx∈(0,l] to explore
layers Lx∈(0,l] (Section 4.3). For each layer Lx∈(0,l], the
algorithm begins a random walk with jump starting (to an
observed but unqueried node) at a random observed node
u ∈ V S \Qx. After each query, Lx and Qx are updated with
the new nodes and edges discovered. These steps continue as
long as the total cost consumed during queries is less than
Bx. Then it continues to another layer.

4.2 Sampling L0 with Multi-Armed Bandits
(MABSample)

In this step, we sample the layer of interest L0 using the
information from the random walk crawls of the cheaper

3Some APIs return only a maximum of k neighbors in response
to a query; in such cases, a node can be treated as multiple nodes,
each with at most k neighbors, as in (Laishram, Areekijseree, and
Soundarajan 2017)

layers. The first step in this process is to initialize LS0 , the
sample of L0, using Lx∈(0,l].

Initialization: Assume E′ is the set of all edges that we
know exist in L0 (because they involve at least one node in
Q0, the set of nodes already queried in L0). Next, consider
the set of edges in LSx∈(0,l], excluding the ones involving
nodes in Q0. Denote this set by E′′, so E′′ is the set of edges
observed in LSx∈(0,l] which may or may not exist in L0.

During the budget allocation, more budget is allocated to
the layers that have high edge overlap with E′. Thus, E′′

will consist of more edges that actually exist in L0. Then, the
sample LS0 is initialized as 〈V S , ES0 〉 where ES0 = E′ ∪ E′′.

Further Exploration with Bandits: We need to ‘clean
up’ the edges between node u, v ∈ V S \ Q0 in LS0 . There
might be extra edges in E′′ that do not actually exist in L0,
or it could be missing edges that have not been observed.
Because our goal is to sample for community structure, we
do not need to check all of these edges; rather, we need to find
only those that change the community structure. To do this,
we use a set of three multi-armed bandits (we use ε-greedy
bandits4 (Katehakis and Veinott Jr 1987)).

As mentioned before, we use three bandits - LBandit,
CBandit and RBandit. Intuitively, these three bandits
together determine which cheap layer, region of that cheap
layer, and type of node are most informative with respect to
the community structure of the layer of interest.

The different bandits are described in further detail be-
low. The reward functions used by the various bandits are
described in Section 4.4.

Layer Bandit: The first bandit, referred to as LBandit,
has arms corresponding to layers Lx∈(0,l]. In LBandit,
edge overlap (Section 4.4) is used as the reward, measur-
ing the similarity between the sample of a layer and observed
sample of L0. We denote the edge overlap between layer
LSx and L0 by Λ(LSx , L0). Because we do not know L0, we
measure the edge overlap against E′. Intuitively, we want to
select those layers with high overlap more often.

In the case of unreliable query responses, the layer uncer-
tainty factor (βµx , β

σ
x) is also a very important consideration.

Because we do not know the actual values of (βµx , β
σ
x), we

use the estimated values (βµ′x , β
σ′
x) (Section 4.5) . Hence, the

layer reward in this case is Λ
(
LSx , L0

)
βµ′x .

Community Bandit: Once a layer Lx has been selected
by the layer bandit, CBandit selects the community in LSx
in which it should look for the node to query. Each layer has
its version of CBandit, which has communities from the
sample of that layer as the arms.

Let the observed communities of LS0 be KS
0 . Assume that

after CBandit selects community k, a node u ∈ k is then
selected by RBandit. After querying on u, let LS+1

0 be the
updated sample, and let KS+1

0 be the new communities.
Let ∆(KS

0 ,K
S+1
0) be the Community Update Distance

(Section 4.4). If ∆(KS
0 ,K

S+1
0) ≈ 0 the query did not help

us in the ‘clean up’. Conversely, if it is high, the uncertainty
of the community structure is high and the query on u found
new edges important to the community structure. So, we want

4See Section 4.6 for discussion on choice of bandit algorithm.

to query more nodes close to u, and give ∆(KS
0 ,K

S+1
0) as

the reward to the arm k in CBandit.
If the number of communities in LSx is large, the algorithm

will take a large number of queries to stabilize to a good
combination of layer, community and role. Thus, CBandit
uses the modularity community hierarchy (Vieira et al. 2014)
instead of all the communities in such cases.

Initially, CBandit has two arms – the two communities
at the highest level. At each step the partition distances of the
two arms are compared. If one arm is found to have signifi-
cantly higher past rewards, it means that querying nodes in
that community gives more edges that are important to the
community structure. So, the two children of that community
in the community dendrogram are selected as the two new
arms of the community bandit. If the past rewards of the two
arms are very low, the two communities are not contributing
edges important to the community structure. So, the parent
of the nodes and the sibling of the parent are selected as the
new arms so that new areas can be explored.

Role Bandit: Each layer has its own RBandit, where
different structural roles are the arms. In our implementation,
the roles used are predefined as maximum and minimum de-
gree, clustering coefficient and betweenness centrality. Other
types of roles (Henderson et al. 2012) can also be used here5.

A set of candidate nodes κ is generated. For RQR, the set
of candidate nodes is given by κ = V S \Q0. In UQR, there
might be nodes Q0 that have unobserved neighbors. Suppose
ρu0 is the probability that u has an unobserved neighbor in
L0 (Section 4.5). Then, we generate a set Q′

0 ⊆ Q0 such that
u ∈ Q′

0 with probability (1− ρux). Hence, κ = V S \Q′
0.

After the layer Lx and community k ∈ KS
x have been se-

lected by LBandit and CBandit, respectively, RBandit
selects a role r. Then it selects a node from κ∩k that satisfies
the role r and returns it to be queried in L0.

Again, similar to the case of CBandit, we want to find
the role such that nodes with that role if queried in L0 results
in a sample whose community update distance is high. Thus,
∆(KS

0 ,K
S+1
0) is used as the reward for arm r in RBandit.

4.3 MultiComSample (MCS)
In this section, we bring together RNDSample and
MABSample, described in Section 4.1 and 4.2, respectively,
to describe the complete algorithm (MCS).

If the total budget allocated is B, MCS allocate some por-
tion, B′, of the budget for the first iterations of RNDSample
and MABSample. B′ is divided so that all the layers get
enough budget to query the same number of nodes. MCS
performs RNDSample in Lx∈(0,l] with the budgets Bx, and
then MABSample is performed in L0.

After running MABSample, we have the layer edge over-
laps (Section 4.4), as used by LBandit. Because the layers
with higher edge overlap are more similar to L0, we want to
allocate more budget to these layers. So, intuitively, we want
Bx ∝ Λ(Lx). On the other hand, allocating more budget to
the layers that are cheaper to query gives a greater quantity of

5Because initially |V S | � |V |, role extraction algorithms are
not very accurate, so we use fixed roles.

data. That is, it is desirable for Bx ∝ 1
cx

. Thus, we allocate
the budgets for Lx∈(0,l] as

Bx =
Λ(Lx)/cx∑

i∈[0,l]
Λ(Li)/ci

B
′
. (1)

This process repeats until all the budget has been used up.

4.4 Reward Functions
Because we do not know K0, we cannot use Ψ(KS

0 ,K0)
directly as the reward functions in MCS. So we use the edge
overlap and community update distance as “stand-in” reward
functions.

Edge Overlap: The edge overlap for layer Lx measured
against layer Ly is the ratio of ratio of edges that exist in LSx
and in LSy , to the total number of edges in LSx . That is

Λx,y =

∣∣∣(ES
0 ∩ E

S
x

)
∩
(
Q0 × V S

)∣∣∣∣∣ES
x ∩

(
Q0 × V S

)∣∣ . (2)

In MCS since the layer of interest is L0, we use Λx,0 as the
reward for LBandit.

Community Update Distance: Consider two community
partitions K,K ′. We define the community update distance
as the normalized partition distance between K,K ′

∆K,K′ =
δ
(
K,K′

)
max

(∑
k∈K |k|,

∑
k∈K′ |k|

) (3)

where δ (·, ·) is the partition distance (Gusfield 2002).
Let KS

x ,K
S+b
x be the communities found in LSx and LS+b

x
(that is after using up b additional queries). In MCS, we use
∆KS

x ,K
S+b
x

as the the reward for CBandit and RBandit
in layer Lx.

4.5 Estimating Uncertainty Factors
In the case of the UQR, we need to estimate the node uncer-
tainty factor βux and layer uncertainty factor (βµx , β

σ
x).

Let us denote the number of times u has been queried in
layer x by qux , and let ru,vx be the number of times node v
was included in the response to a query on node u in Lx. The
selection of nodes for inclusion in Γ′ (u, Lx) are independent
of each other. So, we can estimate βux as

β̂u
x =

1

|Γ
(
u, LS

x

)
|

∑
u∈Γ

(
u,LS

x

)
ru,v
x

qux
. (4)

We can then calculate ρux, the probability that u still has

unobserved neighbor in Lx, as ρux =
(

1− β̂ux
)qxu

. The value
of ρux is used to determine if u is included in the candidate
list for nodes to query in Lx.

For a layer Lx we estimate the layer uncertainty factors,
(β̂µx , β̂σx), as the mean and standard deviation of the uncer-
tainty factors all the nodes in Qx. If a node has been queried
only once, its estimated uncertainty β̂ux ≈ 1. In this case, we
assign it a random value from the normal distribution with
mean β̂µx and standard deviation β̂σx .

Network c0 c1 c2 c3 c4 Cm
TwitterKP 1.0 0.5 0.5 - - 50%
TwitterOW 1.0 0.5 0.5 - - 50%
TwitterSC 1.0 0.5 0.5 - - 50%
TwitterTR 1.0 0.5 0.5 - - 50%
CaHepPhTh 1.0 0.5 - - - 50%
NoordinTop 1.0 0.25 0.25 0.5 0.5 50%
DBLP 1.0 0.5 - - - 5%

Table 2: Query cost and budget of the different layers of the
multiplex networks used for experiments.

4.6 Choice of Multi-Armed Bandit Algorithm
In our implementation of MCS, the multi-armed bandit algo-
rithm that we use is ε-greedy. However, MCS is not tied to
only this bandit algorithm – we can use any other algorithm.

We have replaced ε-greedy in MCS with ε-decreasing,
VDBE (Tokic and Palm 2011) and UCB1 (Auer, Cesa-
Bianchi, and Fischer 2002), and compared the results to
ε-greedy. We observed that the results are not very differ-
ent. So, for simplicity and efficiency, we use ε-greedy.

4.7 Running Time
Assume that d is the average degree and l is the num-
ber of layers. The part of MCS that takes the most time
is the community detection. So, the running time of MCS
isO

(
ldBλ
ζ log

(
dBλ
ζ

))
, where λ = max

x∈[0,l]

(
Λx,0

cx

)
, and ζ =∑

x∈[0,l]

(
Λx,0

cx

)
.

4.8 Sensitivity Analysis
The performance of MCS depends on a number of factors:
(1) the edge overlap between the the different layers, (2) the
number of layers, and (3) the relative cost of a query on the
cheaper layers to the expensive layer.

Assume that the average degree of layer Lx is dx.For layer
Lx, let ox (i) be the expected fraction of unobserved edges on
the next query on the layer, where i is the number of queries
already made. If we have budget B, the number of unique
edges we expect to observe with MCS is

l∑
x=0

dxΛx,0

x−1∏
y=0

(
1− Λy,x

)
Bcx/cΣ∑

i=0

ox(i)

 . (5)

Sensitivity to number of layers: There are two compet-
ing effects due to the number of layers. If there are few layers,
the budget allocated for each layer is high. So, we expect
the performance of MCS to increase initially. However, if the
number of layers is high, the budget allocated for each layer
is lower, and the probability of observing an edge not seen
in another layer decreases. So, the performance of MCS will
then drop after a while as the number of layers grows.

Sensitivity to relative layer costs: For lower relative cost,
the budget allocated to each layer is higher (because cΣ is
lower). So, the performance of MCS will increase with lower
relative cost.

5 Experimental Analysis
In this section, we perform extensive evaluations to compare
the performance of MCS against baseline methods (Section
5.1) and oracle method (Section 5.2). We also experimentally
evaluate the running time (Section 5.3) and effect of number
of layers (Section 5.4). We also run MCS on the real Twitter
API to investigate its scalability (Section 5.6).

The networks we use for our experiments are given in
Table 2. The Twitter networks are collected using the Twit-
ter API (Wendt et al. 2016). These networks contain 3 lay-
ers, and approximately 2k nodes and 10k edges. For the
co-authorship network6, caHepTh is considered as the expen-
sive layer, and caHepPh is considered as the cheap layer. This
network contains approximately 1.3k nodes and 1.9k edges.
The NoordinTop network7 has five layers – communication,
kinship, friendship, classmates and mentors. The commu-
nication layer is considered to be the expensive layer. The
NoordinTop network has 120 nodes and 750 edges across all
layers. The last network we use is the DBLP dataset8 between
2013 and 2017. There are two layers: co-authorship, which is
treated as the expensive layer, and citation. We treat all edges
in all these networks as undirected, and there are around 60k
nodes and 300k edges.

5.1 Performance Comparisons
In these experiments, we run MCS on the networks described
and compare the performance against six baseline algorithms.

Baseline Algorithms We are not aware of any works that
address the problem we tackle here. To compare the perfor-
mance of MCS, we have three variants of Max Degree Sam-
pling and Random Walk. Max Degree Sampling is known to
be effective in finding the community structure in a single
layer network (Maiya and Berger-Wolf 2010), and Random
Walk is good at finding the dense regions of a network.

In the first set of variants, the baseline algorithms are only
aware of the layer of interest. Because we do not know the
true degree of the nodes, the SMD baseline is equivalent to
the MOD algorithm in (Avrachenkov et al. 2014). In each
iteration, the node with the highest observed degree is queried.
The SRW baseline performs a random walk on only L0, with
a reset probability of 0.2.

The second set of variants are similar to the first ones, ex-
cept they operate on the aggregate of all the layers. This gives
the crawler more ways to get to different parts of the network.
We refer to these baselines as AMD and ARW respectively.

The third category of baseline algorithms take into account
the multiplex structure of the networks. At each step, a layer
Lx is selected based on a selection probability p (Lx) ∝
Λ(Lx)
cx

. Once a layer is selected, an unqueried neighbor of
the current node in that layer is selected randomly (MRW)
or based on the observed degree (MMD). The node is then
queried for neighbors in both Lx and L0.

To account for UQR, we need to make a small modification
to the candidate nodes selection in the baseline algorithms.

6https://snap.stanford.edu/data/
7https://sites.google.com/site/sfeverton18/research/appendix-1
8https://dblp.uni-trier.de/

(a) TwitterKP

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 50

Cost

S
im

il
ar
it
y

(b) CaHepThPh

0.00

0.25

0.50

0.75

0 10 20 30 40 50

Cost

S
im

il
ar
it
y

(c) Noordin-Top

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 50

Cost

S
im

il
ar
it
y

0.0

0.2

0.4

0.6

0 10 20 30 40 50

Cost

S
im

il
ar
it
y

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 50

Cost

S
im

il
ar
it
y

0.2

0.4

0.6

0.8

0 10 20 30 40 50

Cost

S
im

il
ar
it
y

Figure 1: Comparison of MCS against various baseline algorithms on different networks in the case of RQR (top row) and UQR
(bottom row). The y-axis is the similarity between the community structure in the sample and the ground truth, and the x-axis is
the budget consumed as a percentage of the total budgets required to query all nodes in L0.

The probability that a u is added to the candidate list is given
by |Γ′(u,Lx)∩Γ(u,LS

x)|
|Γ′(u,Lx)∪Γ(u,LS

x)| . Nodes that have been observed, but
not queried are guaranteed to be in the candidate list.

Experimental Setup We use the Louvain community de-
tection method (Blondel et al. 2011)9. The budget and the
layer costs are given in Table 2. We perform 10 trials of each
experiment to account for randomness in sampling as well
as in the Louvain method. We also keep the ordering of the
nodes consistent to get rid of the effect of node orders during
the community detection process.

For UQR, (βµx , β
σ
x) of all layers in the Twitter, co-

authorship and DBLP networks are set to (0.2, 0.1). For the
NoordinTop network, it is set to (0.2, 0.1) (communication),
(0.5, 0.1) (friendship), (0.25, 0.1) (mentors), and (0.75, 0.1)
(kinship and classmates). (Higher values here means greater
uncertainty of the information gathered from that layer.)

Evaluation To evaluate the detected communities, we
must take into account community quality- i.e., whether
nodes grouped together in the detected communities are also
grouped together in the true communities, and community
representation- i.e., how well the true communities10 are
represented by the detected communities. To measure com-
munity quality, we use Normalized Mutual Information, and
to measure community representation, we use the measure
presented in (Maiya and Berger-Wolf 2010), which gives
a ratio of the communities found to the true communities.
Finally, we report the harmonic mean of these two measures
as the community similarity measure Ψ

(
KS
x ,Kx

)
.

Experimental Results Figure 1 shows the performance
comparison between MCS and the various baselines for differ-
ent budgets under the two query response models (RQR and

9Although we use the Louvain method here, MCS is not depen-
dent on the choice of community detection algorithm.

10The true communities are considered as the ones found by
running the community detection algorithm on the full network.

Network Query Mode MCS Best Baseline

TwitterOW RQR 0.685 0.592 (ARW)
UQR 0.607 0.498 (MRW)

TwitterTR RQR 0.721 0.592 (ARW)
UQR 0.625 0.529 (SRW)

TwitterSC RQR 0.685 0.636 (SMD)
UQR 0.618 0.556 (ARW)

DBLP RQR 0.679 0.554 (SMD)
UQR 0.628 0.517 (MMD)

Table 3: Similarity comparison between communities in L0

and LS0 generated by MCS and the best baselines algorithm at
budget of 20% for different networks under RQR and UQR.

UQR) on the TwitterKP, CaHepPhTh and NoordinTop net-
works. The results for the rest of the networks are presented
in Table 3 due to space limitations.

We can observe that MCS outperforms all the baseline
algorithms in all the cases, and the improvement is significant.
In the case of RQR at budget of 20% we observe improvement
of 9% to 25%, and 8% to 49% in UQR.

It can also be observed that there is no single best base-
line method, and results vary by network structure and query
model. However, MCS can adapt to these variations and con-
sistently outperforms the baselines.

5.2 Regret Analysis
We evaluate the regret of the policy in MCS against the dy-
namic oracle described in (Besbes, Gur, and Zeevi 2014). The
oracle has knowledge of complete network, and at each step,
it knows what the next best combination of arm to maximize
the similarity of KS

0 to K0. It should be noted that MCS does
not have any knowledge about K0.

We perform experiments on the TwitterKP and TwitterOW
networks, and provide the results in Figure 2a. We observe,
the regret of MCS grows rapidly at first, but very slowly after
around 10%− 20% of the nodes are queried. This shows that
performance of MCS become close to the oracle very quickly.

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3

Nodes Queried

C
u
m
u
la
ti
ve

R
eg
re
t

TwitterKP

TwitterOW

(a) Regret for MCS on TwitterKP
(red) and TwitterOW (blue).

0

10000

20000

30000

40000

10000 20000 30000 40000 50000

Budget

T
im

e
(i
n
S
ec
o
n
d
s)

MCS

RW

(b) Running time of MCS against
the budget on DBLP network.

0.25

0.30

0.35

0.40

0.45

2 4 6 8 10

Layer Count

S
im

il
a
ri
ty

500

1000

(c) Sensitivity of MCS to number
of layers at different budgets.

Figure 2: Results for regret analysis (2a), running time analysis (2b), sensitivity to number of layers (2c) of MCS.

5.3 Running Time
In this section, we experimentally investigate the running
time of MCS with respect to the budget provided. Figure 2b
shows the running time vs budget for MCS (Red) on the DBLP
network. The running time for random walk (green) is also
added as a reference. We can observe that the running time
of MCS is super-linear but sub-quadratic, which is consistent
with the results of the theoretical analysis in Section 4.7.
Results on the other datasets are similar and are omitted.

5.4 Effect of Number of Layers
In this section, we investigate the effect of the number of lay-
ers on the performance of MCS. We create multiple synthetic
cheaper layers by taking the layer of interest, and keeping
25% of the edges (randomly) and adding 5% noise.

We run experiments with different budgets and number of
layers, and examine the effect on the performance of MCS.
Figure 2c shows the results of these experiments on the DBLP
dataset. We can observe that for all the budgets, there is a
peak at around four layers, and the performance drops on
either side. This is consistent with the theoretical results in
Section 4.8. The results for the sensitivity to query cost are
also consistent with the theoretical results and is omitted.

5.5 Effect of Role and Community Bandits
One can ask the question of how much the different bandits
contribute to the performance of MCS. To answer this, we
compare MCS, which has all the bandits, against ones without
CBandit and RBandit. We observed that the algorithms
with only two bandits perform well initially. But MCS with
all three bandits catches up, and outperforms the others11.

5.6 Real Twitter API Case Study
In this section, we run MCS on the real Twitter API and
evaluate its scalability. As a baseline we also ran random
walk. We assume that the Twitter Friends/Followers layer
is the one of interest, and mentions, replies are the cheaper
ones. Although these API return different number of nodes,
for simplicity we assume that they return the same amount,
and assign layers cost as 1 for followers/friends, and 0.01 for
mentions and replies. We run MCS and random walk on the
real Twitter API for 168 hours.

Since we do not have access to the ground truth commu-
nity of the entire Twitter network, we cannot evaluate the

11The results are not included here due to space limitations. They
are included in the supplemental materials.

0e+00

1e+06

2e+06

3e+06

0 50 100 150

Time (in Hours)

E
d
ge
s

MCS

RW

Figure 3: Number of edges found vs time by MCS (red) and
random walk (green) using the real Twitter API.

community similarity. However studies have indicated that
algorithms that maximizes the number of edges produces
samples with community structures that are similar to the
full network (Maiya and Berger-Wolf 2010). Figure 3 shows
the number of edges found against time for MCS and random
walk on the Twitter API. We observe that MCS scales very
well with network size, and overtakes the random walk.

6 Conclusion

In this paper, we introduced the problem of sampling for
the community structure in a layer of interest in a multiplex
network under the condition that there are different costs
associated with a query in each layer, and there are some
uncertainty associated with the query responses.

We proposed MCS, a novel multi-armed bandit algorithm
that determines which node in the layer of interest to query
by using the information from other, cheaper layers.

We tested our algorithm on multiple real world multiplex
networks under two settings – RQR and UQR. We found that
MCS outperforms all the baseline algorithms consistently, by
up to 49% over the next best method.

Acknowledgments

Laishram and Soundarajan are supported by the U. S. Army
Research Office under grant number #W911NF1810047.
Wendt’s work is supported by the Laboratory Directed Re-
search and Development program at Sandia National Labora-
tories, a multi-mission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energys National Nuclear Se-
curity Administration under contract DE-NA0003525. This
research was supported in part through computational re-
sources provided by Syracuse University.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learning
47(2-3):235–256.
Avrachenkov, K.; Basu, P.; Neglia, G.; Ribeiro, B.; and
Towsley, D. 2014. Pay few, influence most: Online my-
opic network covering. In IEEE INFOCOM International
Workshop on Network Science for Communication Networks
(NetSciCom 2014), 813–818. IEEE.
Barigozzi, M.; Fagiolo, G.; and Mangioni, G. 2011. Iden-
tifying the community structure of the international-trade
multi-network. Physica A: statistical mechanics and its ap-
plications 390(11):2051–2066.
Berlingerio, M.; Pinelli, F.; and Calabrese, F. 2013. Aba-
cus: frequent pattern mining-based community discovery in
multidimensional networks. Data Mining and Knowledge
Discovery 27(3):294–320.
Besbes, O.; Gur, Y.; and Zeevi, A. 2014. Stochastic multi-
armed-bandit problem with non-stationary rewards. In Ad-
vances in neural information processing systems, 199–207.
Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; and Lefebvre,
É. 2011. The louvain method for community detection
in large networks. J of Statistical Mechanics: Theory and
Experiment 10:P10008.
De Domenico, M.; Solé-Ribalta, A.; Gómez, S.; and Arenas,
A. 2014. Navigability of interconnected networks under
random failures. Proceedings of the National Academy of
Sciences 111(23):8351–8356.
Fortunato, S. 2010. Community detection in graphs. Physics
reports 486(3):75–174.
Girvan, M., and Newman, M. E. 2002. Community structure
in social and biological networks. Proceedings of the national
academy of sciences 99(12):7821–7826.
Gusfield, D. 2002. Partition-distance: A problem and class of
perfect graphs arising in clustering. Information Processing
Letters 82(3):159–164.
Henderson, K.; Gallagher, B.; Eliassi-Rad, T.; Tong, H.; Basu,
S.; Akoglu, L.; Koutra, D.; Faloutsos, C.; and Li, L. 2012.
Rolx: structural role extraction & mining in large graphs. In
Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, 1231–1239.
ACM.
Katehakis, M. N., and Veinott Jr, A. F. 1987. The multi-armed
bandit problem: decomposition and computation. Mathemat-
ics of Operations Research 12(2):262–268.
Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J. P.;
Moreno, Y.; and Porter, M. A. 2014. Multilayer networks.
Journal of complex networks 2(3):203–271.
Laishram, R.; Areekijseree, K.; and Soundarajan, S. 2017.
Predicted max degree sampling: Sampling in directed net-
works to maximize node coverage through crawling. In IEEE
INFOCOM International Workshop on Network Science for
Communication Networks (NetSciCom 2017), number 2017,
940–945.

Lee, K.-M.; Min, B.; and Goh, K.-I. 2015. Towards real-
world complexity: an introduction to multiplex networks.
arXiv preprint arXiv:1502.03909.
Maiya, A. S., and Berger-Wolf, T. Y. 2010. Sampling com-
munity structure. In Proceedings of the 19th international
conference on World wide web, 701–710. ACM.
Mucha, P. J.; Richardson, T.; Macon, K.; Porter, M. A.; and
Onnela, J.-P. 2010. Community structure in time-dependent,
multiscale, and multiplex networks. science 328(5980):876–
878.
Rosvall, M., and Bergstrom, C. T. 2008. Maps of random
walks on complex networks reveal community structure. Pro-
ceedings of the National Academy of Sciences 105(4):1118–
1123.
Tang, L.; Wang, X.; and Liu, H. 2009. Uncoverning groups
via heterogeneous interaction analysis. In Data Mining, 2009.
ICDM’09. Ninth IEEE International Conference on, 503–512.
IEEE.
Tokic, M., and Palm, G. 2011. Value-difference based explo-
ration: adaptive control between epsilon-greedy and softmax.
In Annual Conference on Artificial Intelligence, 335–346.
Springer.
Vieira, V. d. F.; Xavier, C. R.; Ebecken, N. F.; and Evsukoff,
A. G. 2014. Modularity based hierarchical community detec-
tion in networks. In International Conference on Computa-
tional Science and Its Applications, 146–160. Springer.
Wendt, J. D.; Wells, R.; Field, R. V.; and Soundarajan, S.
2016. On data collection, graph construction, and sampling
in twitter. In Advances in Social Networks Analysis and
Mining, 2016 IEEE/ACM International Conference on, 985–
992. IEEE.

